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Preface

This volume contains the papers presented at the 18th International Conference
on Rewriting Techniques and Applications (RTA 2007), which was held during
June 26–28, 2007, on the campus of the Conservatoire National des Arts et
Métiers (CNAM) in Paris, France.

RTA is the major forum for the presentation of research on all aspects of rewrit-
ing. PreviousRTA conferences were held in Dijon (1985),Bordeaux (1987), Chapel
Hill (1989), Como (1991),Montreal (1993), Kaiserslautern (1995), Rutgers (1996),
Sitges (1997), Tsukuba (1998), Trento (1999), Norwich (2000), Utrecht (2001),
Copenhagen (2002), Valencia (2003), Aachen (2004), Nara (2005), and Seattle
(2006).

For RTA 2007, 24 regular papers and 3 system descriptions were accepted
for publication out of 69 submissions. Each submission was reviewed by at least
three expert reviewers, and an electronic Program Committee (PC) meeting was
held on the Internet, using Andrei Voronkov’s EasyChair system. The reviews
were written by the 14 PC members and 131 additional reviewers, who are listed
in these proceedings. I would like to thank the PC members and the additional
reviewers for doing such a great job in writing high-quality reviews in time and
participating in the electronic PC discussion.

The RTA programme also included three invited talks, by Xavier Leroy (For-
mal Verification of an Optimizing Compiler), Robert Nieuwenhuis (Challenges in
Satisfiability Modulo Theories), and Frank Pfenning (On a Logical Foundation
for Explicit Substitutions). The talk by Frank Pfenning was a joint invited talk
of RTA and the collocated Eighth International Conference on Typed Lambda
Calculi and Applications (TLCA 2007).

The RTA PC decided to award a prize of 1,000 euro for the best paper to the
article “On Linear Combinations of λ-Terms” by Lionel Vaux. Moreover, several
travel grants could be given to students.

RTA 2007 was held as part of the Federated Conference on Rewriting, De-
duction, and Programming (RDP), together with the following events:

– The Eighth International Conference on Typed Lambda Calculi and Appli-
cations (TLCA 2007)

– The colloquium From Type Theory to Morphologic Complexity in honor of
Giuseppe Longo

– The workshop on Higher Order Rewriting (HOR)
– The workshop on Proof Assistants and Types in Education (PATE)
– The workshop on Rule-Based Programming (RULE)
– The workshop on Security and Rewriting Techniques (SecReT)
– The workshop on Unification (UNIF)
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– The workshop on Functional and (Constraint) Logic Programmming (WFLP)
– The workshop on Reduction Strategies in Rewriting and Programming (WRS)
– The workshop on Termination (WST)

Many people helped to make RTA 2007 a success. In particular, I would like
to thank the Conference Chairs, Ralf Treinen and Xavier Urbain, as well as the
rest of the local organization team, and the sponsors of RDP 2007:

– The Conservatoire des Arts et Métiers (CNAM)
– The Centre National de la Recherche Scientifique (CNRS)
– The ÉcoleNationale Supérieure d’Informatique pour l’Industrie et l’Entreprise

(ENSIEE)
– The GDR Informatique Mathematique
– The Institut National de Recherche en Informatique et Automatique

(INRIA) unit Futurs
– The Région Île de France

Barbara Morawska and the EasyChair system helped to produce the camera-
ready copy of these proceedings.

April 2007 Franz Baader
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Ralph Matthes
Francois Metayer



Organization IX

Sebastian Mödersheim
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René Vestergaard
Germán Vidal
Alicia Villanueva
Eelco Visser
Fer-Jan de Vries
Roel de Vrijer
Johannes Waldmann
Edwin Westbrook
Hongwei Xi
Hans Zantema
Francesco Zappa Nardelli



Table of Contents

Formal Verification of an Optimizing Compiler . . . . . . . . . . . . . . . . . . . . . . . 1
Xavier Leroy

Challenges in Satisfiability Modulo Theories . . . . . . . . . . . . . . . . . . . . . . . . . 2
Robert Nieuwenhuis, Albert Oliveras,
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Formal Verification of an Optimizing Compiler

Xavier Leroy

INRIA Rocquencourt
Domaine de Voluceau, B.P. 105, 78153 Le Chesnay, France

Xavier.Leroy@inria.fr

Programmers naturally expect that compilers and other code generation tools
produce executable code that behaves as prescribed by source programs. How-
ever, compilers are complex programs that perform many subtle transformations.
Bugs in compilers do happen and can lead to silently producing incorrect exe-
cutable code from a correct source program. This is a signifi cant concern in the
context of high-assurance software that has been verified (at the source level)
using formal methods (static analysis, model checking, program proof, etc): any
bug in the compiler can potentially invalidate the guarantees so painfully estab-
lished by the use of formal methods.

There are several ways to generate confidence in the compilation process,
including translation validation and proof-carrying code. This talk focuses on
applying program proof technology to the compiler itself, in order to prove a
semantic preservation theorem for every pass of the compiler. We present pre-
liminary results from the Compcert experiment: the development and proof of
correctness of a moderately-optimizing compiler for a large subset of the C lan-
guage. The proof of correctness is mechanized using the Coq proof assistant.
Moreover, most of the compiler itself is written directly in the functional subset
of the Coq specification language, from which executable Caml code is automat-
ically extracted.

The preliminary results are encouraging and suggest two directions for long-
term research. One is the formal verification of other tools (code generators,
static analyzers, provers, . . . ) involved in the production and certification of
high-assurance software. The other is the systematic use of proof assistants to
mechanize programming language semantics, type systems, program transfor-
mations and related formal systems.

References

1. Bertot, Y., Grégoire, B., Leroy, X.: A structured approach to proving compiler
optimizations based on dataflow analysis. In: Filliâtre, J.-C., Paulin-Mohring, C.,
Werner, B. (eds.) TYPES 2004. LNCS, vol. 3839, pp. 66–81. Springer, Heidelberg
(2006)

2. Blazy, S., Dargaye, Z., Leroy, X.: Formal verification of a C compiler front-end. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 460–475.
Springer, Heidelberg (2006)

3. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In: 33rd symposium Principles of Programming Languages,
pp. 42–54. ACM Press, New York (2006)

F. Baader (Ed.): RTA 2007, LNCS 4533, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Challenges in Satisfiability Modulo Theories

Robert Nieuwenhuis, Albert Oliveras,
Enric Rodŕıguez-Carbonell, and Albert Rubio�

Abstract. Here we give a short overview of the DPLL(T ) approach to
Satisfiability Modulo Theories (SMT), which is at the basis of current
state-of-the-art SMT systems. After that, we provide a documented list
of theoretical and practical current challenges related to SMT, including
some new ideas to exploit SAT techniques in Constraint Programming.

1 Introduction

Propositional satisfiability checkers (SAT solvers) are currently being applied in
more and more contexts, including hardware and software verification, in Op-
erations Research (planning, scheduling), as well as in Biology, Linguistics and
Medicine. Most SAT solvers are based on the Davis-Putnam-Logemann-Loveland
(DPLL) procedure [DP60, DLL62]. The performance of DPLL-based SAT solvers
has improved spectacularly in the last years, due to better implementation tech-
niques and conceptual enhancements such as backjumping, conflict-driven lemma
learning and restarts [MSS99, MMZ+01, ES03]. However, some practical prob-
lems are more naturally expressed in logics that are more expressive than propo-
sitional logic.

For example, for timed automata, a good choice is difference logic, where
formulas contain atoms of the form a−b ≤ k, which are interpreted with respect
to a background theory T of the integers, rationals or reals. Similarly, for the
verification of pipelined microprocessors it is convenient to consider a logic of
Equality with Uninterpreted Functions (EUF), where the background theory T
specifies a congruence [BD94]. To mention just one other example, the conditions
arising from program verification usually involve arrays, lists and other data
structures, so it becomes very natural to consider satisfiability problems modulo
the theory T of these data structures. In such applications, problems may contain
thousands of clauses like

p ∨ ¬q ∨ a=f(b− c) ∨ read(s, f(b− c) )=d ∨ a− g(c) ≤7

containing purely propositional atoms as well as atoms over (combined) theories.
This is known as the Satisfiability Modulo Theories (SMT) problem for a theory
T : given a formula F , determine whether F is T -satisfiable, i.e., whether there
exists a model of T that is also a model of F .
� Technical Univ. of Catalonia, Barcelona. All authors partially supported by Spanish
Min. of Educ. and Science through the LogicTools project (TIN2004-03382) and
Intel Corp. Research Grant: “SMT Solvers for High-Level Hardware Verification”.

F. Baader (Ed.): RTA 2007, LNCS 4533, pp. 2–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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SMT has become an extremely active area of research. A rapidly growing
library of benchmarks for SMT with a formal syntax and semantics exists [RT03],
as well as a yearly SMT competition (both SMT-LIB and SMT-COMP are easily
found on the web).

The DPLL(T ) approach to SMT is based on a general DPLL(X) engine, whose
parameter X can be instantiated with specialized solvers SolverT for given theo-
ries T , thus producing a system DPLL(T ). Once the DPLL(X) engine has been
implemented, new theories can be dealt with by simply plugging in new theory
solvers. These solvers must only be able to deal with conjunctions of theory
literals and conform to a minimal and simple set of additional requirements.

In Sections 2, 3 and 4 of this paper, by means of a rewrite-rule-based frame-
work called Abstract DPLL we first give a brief overview of DPLL, SMT, and
the DPLL(T ) approach to SMT (we refer to [NOT06] for all details and refer-
ences). In Section 5 we describe a number of theoretical and practical challenges
in SMT. Extensions for handling new theories and applications, including op-
timization and constraint programming are discussed, as well as for first-order
theorem proving. Other challenges involve the design of efficient data structures
and algorithms for implementing certain key parts of SMT solvers. All of them
are closely related to the area of rewriting.

2 The DPLL Procedure

Let P be a fixed finite set of propositional symbols. If p ∈ P , then p and ¬p
are literals of P . The negation of a literal l, written ¬l, denotes ¬p if l is p, and
p if l is ¬p. A clause is a disjunction of literals l1 ∨ . . . ∨ ln. A unit clause is
a clause consisting of a single literal. A (finite, non-empty, CNF) formula is a
conjunction of one or more clauses C1∧. . .∧Cn. When it leads to no ambiguities,
we sometimes also write such a formula in set notation {C1, . . . , Cn} or simply
replace ∧ connectives by commas.

A (partial truth) assignment M is a set of literals such that {p,¬p} ⊆ M for
no p. A literal l is true in M if l ∈M , it is false in M if ¬l ∈M , and l is undefined
in M otherwise. M is total over P if no literal of P is undefined in M . A clause
C is true in M if at least one of its literals is true in M . It is false in M if all its
literals are false in M , and it is undefined in M otherwise. A formula F is true in
M , or satisfied by M , denoted M |= F , if all its clauses are true in M . In that
case, M is called a model of F . If F has no models then it is called unsatisfiable.
If F and F ′ are formulas, we write F |= F ′ if F ′ is true in all models of F . Then
we say that F ′ is entailed by F , or is a logical consequence of F .

In what follows, (possibly subscripted or primed) lowercase l always denotes
literals. Similarly C and D always denote clauses, F and G denote formulas, and
M and N are assignments. If C is a clause l1 ∨ . . . ∨ ln, we sometimes write ¬C
to denote the formula ¬l1 ∧ . . . ∧ ¬ln.

Here a DPLL procedure is modeled by a transition relation over states. A
state is either FailState or a pair M || F , where F is a finite set of clauses and
M is a sequence of literals that is seen as a partial assignment. Some literals l
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in M will be annotated as being decision literals ; these are the ones added to
M by the Decide rule given below, and are sometimes written ld. The transition
relation is defined by means of rules.

Definition 1. The DPLL system with Backtrack consists of the four rules:

UnitPropagate :

M || F, C ∨ l =⇒ M l || F, C ∨ l if
{
M |= ¬C
l is undefined in M

Decide :

M || F =⇒ M ld || F if
{
l or ¬l occurs in a clause of F
l is undefined in M

Fail :

M || F, C =⇒ FailState if
{
M |= ¬C
M contains no decision literals

Backtrack :

M ld N || F, C =⇒ M ¬l || F, C if
{
M ld N |= ¬C
N contains no decision literals

One can use these rules for deciding the satisfiability of an input CNF F by
simply generating an arbitrary derivation ∅ || F =⇒ . . . =⇒ Sn, where Sn is
irreducible by the rules. Such derivations are always finite, and

(i) F is unsatisfiable if, and only if, the final state Sn is FailState, and
(ii) if Sn is of the form M || F then M is a model of F .

These rules speak for themselves, providing a classical depth-first search with
backtracking, where the Decide rule represents a case split: an undefined literal l
is chosen from F , and added to M . The literal is annotated as a decision literal,
to denote that, if M ld cannot be extended to a model of F , then (by Backtrack)
still the other possibility M ¬l must be explored. In the following, if M is a
sequence of the form M0 l1M1 . . . lk Mk, where the li are all the decision literals
in M , then the literals of each li Mi are said to belong to decision level i.

Example 2. In the following derivation, to improve readability we have denoted
atoms by natural numbers, negation by overlining, and written decision literals
in bold font:

∅ || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒ (Decide)
1 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒ (UnitPropagate)

1 2 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒ (UnitPropagate)
1 2 3 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒ (UnitPropagate)

1 2 3 4 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒ (Backtrack)
1 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒ (UnitPropagate)

1 4 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒ (Decide)
1 4 3 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒ (UnitPropagate)

1 4 3 2 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 Final state:
model found. 	




Challenges in Satisfiability Modulo Theories 5

In modern DPLL-based SAT solvers instead of Backtrack a more general Backjump
rule is considered, of which Backtrack is a particular case.

Definition 3. The Backjump rule is defined as follows:

M ld N || F, C =⇒ M l′ || F, C if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M ld N |= ¬C, and there is
some clause C′ ∨ l′ such that:
F,C |= C′ ∨ l′ and M |= ¬C′,
l′ is undefined in M , and
l′ or ¬l′ occurs in F

We call the clause C′ ∨ l′ a backjump clause.

Example 4. The aim of this Backjump rule is to generalize backtracking by a
better analysis of why the so-called conflicting clause C is false. Standard back-
tracking reverses the last decision, and adds it (as a non-decision literal) to the
previous decision level. Backjumping generalizes this by adding a new literal to
a possibly lower decision level. Consider:

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (UnitPropagate)

1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (UnitPropagate)

1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (UnitPropagate)

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (Backjump)
1 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ . . .

Before the Backjump step, the clause 6∨5∨2 is conflicting: it is false in 1 2 3 4 5 6.
The reason for its falsity is the literal 2 together with the decision 5 and its unit
propagation 6. Therefore, one can infer that 2 is incompatible with the decision
5. Indeed, the backjump clause 2 ∨ 5 is a logical consequence of the last two
clauses. It allows us to return to the first decision level, adding there, as a unit
propagation, the literal 5 (which plays the role of l′ in the Backjump rule). 	


Note that in the previous example an application of Backtrack instead of Backjump
would have given a state with first component 1 2 3 4 5, even though the deci-
sion level 3 4 is unrelated with the reasons for the falsity of 6 ∨ 5 ∨ 2. Moreover,
intuitively, the search state 1 2 5 reached after Backjump is more advanced than
1 2 3 4 5. This notion of “being more advanced” is formalized in Theorem 8 below.

The following example shows how Backjump can be applied in practice, by
finding an adequate backjump clause.

Example 5. Consider a state M || F , where, among other clauses, F contains:

9∨6∨7∨8 8∨7∨5 6∨8∨4 4∨1 4∨5∨2 5∨7∨3 1∨2∨3

and M is of the form: . . . 6 . . . 7 . . .9 8 5 4 1 2 3. It is easy to observe how
by six applications of UnitPropagate this state has been reached after the last



6 R. Nieuwenhuis et al.

decision 9. For example, 8 is implied by 9, 6, and 7, due to the leftmost clause
9 ∨ 6 ∨ 7 ∨ 8. The ordered sequence of propagated literals is stored, each one of
them together with the clause that caused it. In this state M || F , the clause
1∨ 2∨ 3 is conflicting, since M contains 1, 2 and 3. Now one can trace back the
reasons for this conflicting clause. For example, 3 was implied by 5 and 7, due to
the clause 5 ∨ 7 ∨ 3. The literal 5 was in turn implied by 8 and 7, and so on. In
this way, working backwards from the conflicting clause, and in the reverse order
in which each literal was propagated, we get the following (conflict) resolution
proof:

8∨7∨5
6∨8∨4

4∨1
4∨5∨2

5∨7∨3 1∨2∨3
5∨7∨1∨2

4∨5∨7∨1
5∨7∨4

6∨8∨7∨5
8∨7∨6

The process stops once it generates a clause with only one atom of the current
decision level, in our example, the literal 8 in the clause 8∨7∨6. This process is
equivalent to the implication-graph-based conflict analysis, where this literal is
called the First Unique Implication Point (1UIP), see [MSS99, MMZ+01]. The
clause obtained is a backjump clause C ∨ l′ where the 1UIP is the literal l′. 	


In most modern DPLL implementations, the backjump clause is always added
to the clause set as a learned clause (conflict-driven clause learning). In the
previous example, learning the lemma 8 ∨ 7 ∨ 6 will allow the application of
UnitPropagate to any state where M contains the negation of two of its literals,
hence preventing any conflict caused by having the negation of all three. Indeed,
reaching such similar conflicts frequently happens in industrial problems having
some regular structure, and learning such lemmas is known to be very effective.
Since a lemma is aimed at preventing future similar conflicts, when such conflicts
are not very likely to be found again the lemma can be removed. In practice this
is done if its activity (e.g., the number of times it is involved in a conflict) has
become low.

Definition 6. The rules of Learn and Forget are the following ones:

Learn :

M || F =⇒ M || F, C if
{

all atoms of C occur in F
F |= C

Forget :
M || F, C =⇒ M || F if

{
F |= C

State-of-the-art SAT-solvers [MMZ+01, ES03] essentially apply these rules using
efficient implementation techniques for UnitPropagate (e.g., watching two literals
for unit propagation [MMZ+01]), and activity-based heuristics for selecting the
decision literal for Decide: split on literals that occur in recent lemmas and
conflicts. In addition, the DPLL procedure may periodically be restarted to
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escape from bad search behaviors. The rationale behind this is that upon each
Restart (i.e., M || F =⇒ ∅ || F ), the newly learned lemmas will lead the
heuristics for Decide to behave differently, and hopefully cause the procedure to
explore the search space in a more compact way. We have the following results
for the DPLL rules introduced so far (see [NOT06] for all details):

Theorem 7. If ∅ || F =⇒∗ S where S is irreducible w.r.t. Decide, Backjump
and Fail, then (i) S is FailState if, and only if, F is unsatisfiable, and (ii) if S
is of the form M || F ′ then M is a model of F .

Theorem 8. Any derivation ∅ || F =⇒ S1 =⇒ . . . is finite if it contains only
finitely many consecutive Learn and Forget steps and Restart is applied only with
increasing periodicity.

3 Satisfiability Modulo Theories

Now let the set P over which formulas are built be a fixed finite set of ground
(i.e., variable-free) first-order atoms (instead of propositional symbols as before).
A theory T is a set of closed first-order formulas that is satisfiable in the first-
order sense. A formula F is T -satisfiable or T -consistent if F ∧ T is satisfiable
in the first-order sense. If M is a T -consistent partial assignment and F is a
formula such that M |= F , i.e., M is a (propositional) model of F , then we say
that M is a T -model of F . The SMT problem for a theory T is the problem
of determining, given a formula F , whether F is T -satisfiable, or, equivalently,
whether F has a T -model. Note that, as usual in SMT, here we only consider the
SMT problem for ground (and hence quantifier-free) CNF formulas F . Also note
that F may contain constants that are free in T , which, as far as satisfiability is
concerned, can equivalently be seen as existentially quantified variables. We will
consider here only theories T such that the T -satisfiability of conjunctions of
such ground literals is decidable, and a decision procedure for doing so is called
a T -solver. If F and G are formulas, then F entails G in T , written F |=T G, if
F ∧ ¬G is T -inconsistent.

The eager approach to SMT is based on sophisticated satisfiability-preserving
translations from SMT into SAT. But on many practical problems the translation
or the SAT solver run out of time or memory. Alternatively, translating into DNF
and using a T -solver for deciding the satisfiability of conjunctions of theory
literals is also too inefficient due to the exponential blowup of the DNF.

Therefore, the lazy approach tries to combine specialized T -solvers with state-
of-the-art SAT solvers for dealing with the boolean structure of the formulas. It
initially considers each atom as a propositional symbol, i.e., it “forgets” about
the theory T . If a SAT solver reports propositional unsatisfiability, then F is
also T -unsatisfiable. If it returns a propositional model of F , then this model (a
conjunction of literals) is checked by a T -solver. If it is T -satisfiable then it is
a T -model of F . Otherwise, the T -solver builds a ground clause, called a theory
lemma, a clause C such that ∅ |=T C, precluding that model. This lemma is
added to F and the SAT solver is started again. This process is repeated until
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the SAT solver finds a T -satisfiable model or returns unsatisfiable. The lazy
approach is quite flexible, by combining any SAT solver with any T -solver. See
[NOT06] for a more detailed comparison of approaches and references.

Example 9. Assume we are deciding the satisfiability of a large EUF formula,
i.e., the background theory T is equality, and assume that the model M found
by the SAT solver contains, among many others, the literals: b = c, f(b) = c,
a �= g(b), and g(f(c)) = a. Then the T -solver detects that M is not a T -model,
since b = c ∧ f(b) = c ∧ g(f(c)) = a |=T a = g(b). Therefore, the
lazy procedure has to be restarted after the corresponding theory lemma has
been added to the clause set. In principle, one can take as theory lemma simply
the negation of M , that is, the disjunction of the negations of all the literals in
M . However, this clause may therefore have thousands of literals, and the lazy
approach will behave much more efficiently if the T -solver is able to generate a
small explanation of the T -inconsistency of M , which in this example could be
the clause b �=c ∨ f(b) �=c ∨ g(f(c)) �=a ∨ a=g(b). 	


3.1 DPLL Modulo Theories

We now adapt the abstract DPLL framework for the propositional case presented
in the previous section. Here Learn, Forget and Backjump are slightly modified in
order to work modulo theories: in these rules, entailment between formulas now
becomes entailment in T :

Definition 10. The rules T -Learn, T -Forget and T -Backjump are:

T -Learn :

M || F =⇒ M || F, C if
{

every atom of C occurs in F or in M
F |=T C

T -Forget :

M || F, C =⇒ M || F if
{
F |=T C

T -Backjump :

M ld N || F, C =⇒ M l′ || F, C if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M ld N |= ¬C, and there is
some clause C′ ∨ l′ such that:
F,C |=T C′ ∨ l′ and M |= ¬C′,
l′ is undefined in M , and
l′ or ¬l′ occurs in F or in M ld N

The naive lazy approach to SMT is modeled as follows using the rules. Each
time a state M || F is reached that is irreducible with respect to Decide, Fail
and T -Backjump, M can be T -consistent or not. If it is, then M is indeed a
T -model of F . If it is not, then there exists a subset {l1, . . . , ln} of M such that
∅ |=T ¬l1∨. . .∨¬ln. By one T -Learn step, this theory lemma ¬l1∨. . .∨¬ln can
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be learned and then Restart can be applied. If these theory lemmas are never
removed by the T -Forget rule, this strategy is terminating, sound and complete
in a similar sense as in the previous section.

Several important enhancements of the lazy approach can now easily be mod-
eled using the rules:

Incremental T -solver. The T -consistency of the model can be checked incre-
mentally, while the model is being built by the DPLL procedure, i.e., without
delaying the check until a propositional model has been found, thus saving use-
less work. Assume a stateM || F has been reached such that M is T -inconsistent.
Then, as in the naive lazy approach, there exists a subset {l1, . . . , ln} of M such
that ∅ |=T ¬l1∨. . .∨¬ln. This theory lemma is then learned, reaching the state
M || F, ¬l1∨. . .∨¬ln. As in the previous case, then Restart can be applied.

Incremental T -solver and on-line SAT solver. When a T -inconsistency is
detected by the incremental T -solver, the DPLL procedure can simply backtrack
to the last point where the assignment was still T -consistent, instead of restarting
from scratch. As in the previous case, if a T -inconsistency is detected, a state
M || F, ¬l1∨. . .∨¬ln is reached. But now the procedure repairs the T -inconsistency
of the partial model by exploiting the fact that ¬l1∨. . .∨¬ln is a conflicting clause,
and hence either Fail or T -Backjump applies.

Theory propagation. In the approach presented so far, the T -solver pro-
vides information only after a T -inconsistent partial assignment has been gen-
erated. In this sense, the T -solver is used only to validate the search a posteri-
ori, not to guide it a priori. In order to overcome this limitation, the T -solver
can also be used in a given DPLL state M || F to detect literals l occurring
in F such that M |=T l, allowing the DPLL procedure to move to the state
M l || F . This is called theory propagation. It requires the following additional
rule Theory Propagate:

M || F =⇒ M l || F if

⎧⎨
⎩
M |=T l
l or ¬l occurs in F
l is undefined in M

Exhaustive Theory Propagation. For some theories it even pays off, for every
state M || F , to eagerly detect and propagate all literals l occurring in F such
that M |=T l . Then, in every state M || F the model M will be T -consistent,
and hence the T -solver will never (need to) detect any T -inconsistencies. It is
modeled simply by assuming that Theory Propagate is applied eagerly.

Similar correctness, termination, and completeness results apply as given in
the previous section for the propositional case (see [NOT06] for details).

4 The DPLL(T ) Approach

DPLL(T ) is based on a general DPLL engine, called DPLL(X), combined with
a module SolverT that can handle conjunctions of literals in T . This is similar
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to the CLP (X) scheme for constraint logic programming: a clean and modular,
but efficient, use of specialized solvers within a general-purpose engine. DPLL(T )
combines the advantages of the eager and lazy approaches to SMT. As soon as
the theory starts playing a significant role, DPLL(T ) is very efficient (see the
SMT-COMP results), and it has the flexibility of the lazy approaches, by simply
plugging in other solvers that conform to a minimal interface.

Here we describe the DPLL(T ) approach without exhaustive theory propa-
gation (see [NO05a] for an exhaustive approach for difference logic). For the
initial setup of DPLL(T ), Solver

T
reads the input CNF, stores the list of all

literals occurring in it, and hands it over to DPLL(X), who treats it as a purely
propositional CNF. After that, DPLL(T ) implements the rules as follows:

• Each time DPLL(X) communicates to Solver
T

that another literal l is added
to the partial model M (e.g., due to UnitPropagate or to Decide), Solver

T

answers indicating whether M is still T -consistent. If not, SolverT returns a
(preferably small) explanation why, that is, a subset {l1, . . . , ln} of M that
becomes T -inconsistent by adding l to it. DPLL(X) then handles ¬l1∨. . .∨¬ln
as a conflicting clause, applying T -Backjump or Fail.

• DPLL(X) can also ask Solver
T

to return a (possibly incomplete) list of lit-
erals that are T -consequences, to which it then applies Theory Propagate.

• DPLL(X) applies Fail or T -Backjump if after UnitPropagate a conflict is
detected. For T -Backjump, the backjump clause is built as in Example 5, but
with an important difference: a literal l can now be in M not only by Decide
or by UnitPropagate, but also due to an application of Theory Propagate.
In the last case, the conflict resolution process requires that Solver

T
must

be able to also give explanations of theory propagations, that is, to recover
a (preferably small) subset of literals {l1, . . . , ln} of M that T -entailed l.
DPLL(X) then treats l in the resolution process as if ¬l1∨. . .∨¬ln ∨ l had
caused a unit propagation of l.

• At each T -Backjump application, T -Learn learns the backjump clause (which
is a T -consequence of the current formula). DPLL(X) also tells SolverT how
many literals of the partial interpretation have been unassigned in the back-
jump, which allows Solver

T
to undo them.

• DPLL(X) applies Decide only if none of Theory Propagate, UnitPropagate,
Fail or T -Backjump is applicable. An activity-based heuristic for choosing
the decision literal as in propositional DPLL is used.

• In a typical DPLL(T ) implementation, DPLL(X) applies Restart when cer-
tain system parameters reach some prescribed limits, such as the number
of conflicts or lemmas, the number of new units derived, etc. T -Forget can
be applied, e.g., after each restart, removing part of the lemmas according
to their activity (number of times involved in a conflict, etc.). Usually the
newest lemmas are not removed.

5 Challenges

We now describe a number of theoretical and practical challenges in SMT.
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First we consider extensions for improving the solvers for some of the most im-
portant theories: equality, linear arithmetic, and bitvectors. This involves ques-
tions of both theoretical and practical nature.

After that, we discuss some challenges arising in the context of the extension of
SMT for handling formulas with universal quantifiers, i.e., for first-order theorem
proving.

Finally we discuss new ideas for extending SMT to other application areas
including optimization and constraint programming. This also involves the de-
velopment of solvers for new theories.

5.1 Challenges for Improving Current Theory Solvers

Let us first discuss T -solvers for EUF logic, where the theory is just equal-
ity (a congruence). As for any T -solver, its requirements are as explained in
the previous section: each time an additional literal comes in, it must check
whether the conjunction remains T -consistent, and, if not, give an explanation
(a T -inconsistent subset of the literals); it must also be able to find theory prop-
agations and, when demanded, give explanations of these too; and it must be
capable of backtracking, i.e., undoing (dis)equalities.

Positive equality literals can be propagated efficiently by congruence closure
(CC) [DST80]. In [NO07] an incremental, backtrackable CC algorithm is given
which can also efficiently retrieve explanations from CC, which is non-trivial.

Challenge 1: This challenge was first discussed at this conference in 2005
[NO05b]. It is widely understood that small explanations tend to behave better
in practice. Finding for CC an explanation with the minimum number of literals
is NP-hard (Ashish Tiwari, personal communication). Hence minimality w.r.t. ⊆
is considered. The explanations produced in [NO07] may, in a small percentage
of cases, contain redundant equations. How to get irredundant ones, or small(er)
ones in some other sense? Studying this may produce useful new insights, al-
though it may only have a limited practical impact on the performance of SMT
solvers.

Challenge 2: Determine the exact complexity of CC. The aforementioned CC
algorithms are O(n log n), but it is still unknown whether this is optimal. Some
researchers conjecture that something like O(n α(n, n)), as in Union-Find, might
be possible for CC, and hence also for the ground word problem.

Challenge 3: The development of proof-producing SMT solvers is an impor-
tant research topic. How to do efficient CC proof mining? For more details on
this challenge, see [ST05], where Stump and Tan (two years ago at RTA) gave
an elegant rewrite-based approach for equivalence closure; see also [SL06], an
ingredient for its extension to CC.

Together with EUF logic, so far the most important classes of T -solvers are
those for (fragments of) linear arithmetic over the integer or real numbers (see
for instance the list of logics in SMT-LIB).
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Challenge 4: It is well-known that, for many problems arising from the real
world, a non-negligible percentage of the literals in linear arithmetic actually
falls into difference logic1 (see also [BBC+05]). This observation cries out for
techniques for linear constraint solving that are “difference-logic-aware”. In this
direction, promising results have already been accomplished in [DdM06b], thanks
to, among others, a simplex procedure with a particular treatment of bound
constraints, i.e., of the form a ≤ k or a ≥ k, which in some cases is even faster
than specialized tools for difference logic. However, for dense difference-logic
problems, such as those coming from scheduling, there is room for improvement
[DdM06a].

Challenge 5: There is practical evidence that a good way to handle equalities
(respectively, disequalities) is by splitting these constraints as conjunctions (re-
spectively, disjunctions) of inequalities. For instance, in the case of the integers,
the satisfiability of a conjunction of difference logic disequalities and inequali-
ties is NP-complete, whereas by restricting to inequalities the problem becomes
polynomial; thus, splitting allows one to pass the NP-hardness of the solver
to the boolean engine, which is designed to be efficient in handling the search
space, as explained in previous sections. In the case of linear real arithmetic,
in order to detect inconsistencies with disequalities, it is necessary to detect all
implicit equalities implied by the constraints in the assignment, which may en-
tangle a costly overhead; state-of-the-art solvers confirm this fact experimentally
[DdM06b]. Therefore, boolean splittings can be exploited to improve efficiency.
A natural problem is thus whether there exist new better ways of using the
boolean engine in order to simplify the theories and so get faster solvers.

Challenge 6: So far, all SMT tools for full linear arithmetic employ infinite-
precision numbers to guarantee the soundness of the results (since most of them
are applied in verification applications). Although there exist sophisticated nu-
merical libraries for this purpose, e.g., GMP2, the involved overhead must not
be neglected. A challenge would be to employ non-precise arithmetic so as to ob-
tain more efficient solvers, as done in the context of Operations Research [ILO].
Is there any clever way of using an efficient non-precise off-the-shelf solver, and
then only do a few checks with infinite-precision to guarantee soundness? A
possibility could also be to develop solvers based on interior-point algorithms
[Ter96, RTV97], which can only be implemented efficiently by means of floating-
point arithmetic.

Finally, one of the most challenging theories in SMT, mainly due to its appli-
cation to hardware verification, is the one of bitvectors. Elements of this domain
can be viewed as arrays of bits, to which bitwise logical operators can be ap-
plied; but they can also be seen as integers, requiring support for the elementary
arithmetic operations.

This inherent duality is also reflected on the existing techniques. On the one
hand, translating the problem into propositional logic (known as bit-blasting) is

1 See eecs.berkeley.edu/~sseshia/research/uclid.html.
2 See http://gmplib.org/.
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well-suited for problems where bitwise operators dominate. On the other hand,
when the problem has a prevailing arithmetic component, encoding it in linear
integer arithmetic is the method of choice.

Challenge 7: Unfortunately, when there is no significant dominance none of the
current methods is satisfactory. The challenge is to obtain hybrid procedures that
combine the benefits of both approaches, e.g., by bit-blasting only very lazily.

Challenge 8: Are there any fragments of the theory of bitvectors that can be
handled more efficiently, but are still useful for certain practical applications?

5.2 Challenges for SMT with Quantifiers

SMT is typically considered to be the problem of checking the satisfiability of
a ground first-order formula modulo a background theory T . If a T -solver for
this particular theory is available, no quantifier reasoning is necessary at all.
However, for several reasons, this is sometimes a too optimistic setting:

– In some applications, the ground fragment is not expressive enough and one
needs to introduce first-order quantifiers in the formula. This is the case, just
to give an example, in proof obligations arising from software verification
where loop invariants may contain quantifiers.

– It is not always the case that a T -solver for the theory under consideration
is available. In this case, a possible solution is to work with a finite axiom-
atization of T (if it exists), and apply generic first-order theorem proving
techniques such as resolution or paramodulation.

Hence, it is necessary to develop techniques and tools that support quantifiers.
Although some initial work has already been carried out, we believe there is still
a lot of space for improvement.

Challenge 9: For dealing with non-ground formulas, the underlying idea of the
existing techniques is based on Herbrand’s theorem. That is, the unsatisfiabil-
ity of a formula is to be detected by generating an unsatisfiable set of ground
instances. In order to only generate a small but still sufficient set of instances,
one first considers the congruence E generated by all equalities between ground
terms in the current partial model. Then, given a non-ground term t occurring
in the formula, its relevant ground instances tσ are those such that tσ =E s for
some ground term s ∈ E.

For given t, s, and E, checking whether such a σ exists is called the E-matching
problem of t with s. It is well-known to be NP-hard even for fixed s and E: if E is
the congruence generated by the 10 ground equations and(0, 0)=0, and(0, 1)=
0, . . . representing the truth tables of and, or and not, then a propositional
formula (a term with variables built over and, or and not) is satisfiable if, and
only if, it E-matches with 1.

The idea of using E-matching for generating a sufficient yet small set of
ground instances was first used in the Simplify theorem prover [DNS96] and
it has recently been adapted in other SMT solvers such as Yices [DdM06a] or
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CVC3 [BT07]. A challenging task, partially studied in [dMB07], is to develop
efficient data structures and algorithms that support all necessary operations for
E-matching in the context of an SMT solver.

Challenge 10: As already mentioned, the generation of suitable instances is
done via E-matching. Since some function and predicate symbols have a prede-
fined semantics given by the theory T , it would be worth considering at least part
of this semantics when matching terms. For example, could one use the fact that,
when working modulo the theory of linear arithmetic, the function symbol + is
associative and commutative and thus generate instances using AC-matching?

Challenge 11: Despite the well-known severe theoretical limitations, it would be
interesting to identify fragments and theories for which refutational completeness
can be obtained. Even more, by using appropriate redundancy techniques, would
it be possible to detect satisfiability in some particular cases?

5.3 SMT for Constraint Programming (CP) and Optimization

In CP (in a broad sense), relations between variables over given domains can be
stated in the form of constraints, and the aim is to find values for these vari-
ables that satisfy these constraints and/or to optimize some objective function.
CP modeling and solving techniques are being applied to problems in a large
and broad variety of fields in engineering, (hardware and software) verification,
timetabling, traffic and logistics, or finance, among others.

Today it is becoming clearer that SAT and CP techniques share many tech-
nological similarities and applications (see the “CP 2006 Workshop on the In-
tegration of SAT and CP techniques”). SAT techniques, when applicable, have
the advantage of being very efficient, robust, and highly automatic. On the other
hand, the low-level language of propositional logic makes modeling tedious and
difficult, and produces non-compact SAT problems, even with extensions such
as (weighted) MAX-SAT or pseudo-Boolean constraints that can express opti-
mization. In CP, elegant general formalisms facilitate modeling, and sophisticated
special-purpose filtering and propagation algorithms exist for a large diversity of
expressive global constraints. But CP implementations are frequently sensitive to
variations in the input problem, and tend to need tuning by hand to find good
heuristics.

Our aim here is to outline several ideas for using SMT, and in particular, our
DPLL(T ) approach, to combine SAT and CP techniques, hopefully getting the
advantages of both and the drawbacks of none.

One lesson most SAT and CP researchers have learned is that techniques that
work well on artificial or random problems may not do so on real-world problems,
and vice versa3. In the SAT world, this is not surprising, since lemma learning
3 But still, many experiments of CP techniques for real-world applications are being
carried out on artificial problems, and problems are sometimes called “non-artificial”
because they are translations of, e.g., graph problems which were random or hand-
crafted!
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is crucial for exploiting the “structure” of real-world problems, a structure that
does not exist in random problems. Indeed, on real-world SAT problems, the
complete DPLL procedure outperforms incomplete local search methods even for
satisfiable problems (see www.satcompetition.org). We now compare complete
systematic search methods for SAT and CP on four basic aspects.

Backtracking, backjumping and lemmas
SAT: Conflict analysis techniques allow one to backjump, and at the same time
provide the lemmas (in the form of new clauses, i.e., in the same input language!)
for preventing similar conflicts in the future.
CP: Techniques for going beyond chronological backtracking exist, as well as
notions of lemmas (nogoods) for pruning portions of the search space that are
known to contain no solutions, but frequently the generality and diversity of the
language makes this too difficult. Also the complexity of the constraint filtering
and propagation algorithms frequently impedes it, since a notion of explanation is
required for a precise conflict analysis (as we have seen), and there is no uniform
representation language for nogoods in CP, and no uniform conflict analysis and
backjump technique (these aspects are highly implementation-dependent).

Heuristics
SAT: One single, robust, general-purpose heuristic is used, based on literal ac-
tivity (roughly, split on the literal with the highest number of recent occurrences
in conflicts and lemmas). One can see this as “working off” locally one constraint
“cluster” at a time, and, while doing this, extracting lemmas from it, which are
kept only while they are active (i.e., useful in pruning the search).
CP: Typical heuristics are based on the first-fail principle (e.g., minimum do-
main). In practice, tuning is usually needed to find a good heuristic for a given
problem, or problem instance. On industrial SAT problems such heuristics be-
have poorly, consecutively visiting rather unrelated points in the search space,
and thus also making it difficult to keep enough useful active lemmas.

Propagation/pruning
SAT: Essentially, only unit propagation is used. Other techniques such as 2-
literal-clause reasoning are usually found too expensive.
CP: Sophisticated techniques for propagating and filtering many types of con-
straints (aimed at important applications) have been developed, maintaining
different degrees of (arc, bound, etc.) consistency.

Data structures:
SAT: Refined data structures exist for unit propagation (two-watched literals),
clause representation, and bookkeeping for the heuristics.
CP: Again, the generality and diversity of the language makes it hard to develop
such data structures. Even for the simple language of propositional CNF, it has
taken years of research in SAT solving to reach the current state of the art.

Challenge 12: Develop an SMT system with the advantages of one of CP’s
sophisticated global constraint propagation algorithms and the robustness and
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efficiency of SAT’s backjumping, lemmas and heuristics. The idea is to express
the global constraints as a theory. For instance, we are currently working on the
following system.

Example 11. Consider the typical (academic) CP problem of Quasi-Group
Completion (QGC, also known as Latin squares). It is im-
portant in practice because it appears hidden in many real-
world (e.g., scheduling) problems. The question is whether
an n×n table like this one can be completed such that each
row and column contains the numbers 1 . . . n (in this case
n = 5):

3 4
3 4 5
4 5
5

Currently a good (possibly the best) technique for QGC is the so-called 3-D
encoding into SAT [KRA+01], where a propositional variable xijk means “row i
column j has value k”, and the following clauses are given:

1. At least one k per [i, j]: clauses like xij1 ∨ . . . ∨ xijn, and
at most one k per [i, j]: 2-literal clauses like ¬xij1 ∨ ¬xij2.

2. The analogous clauses for exactly one j per [i, k] and one i per [j, k].
3. One unit clause per filled-in value, e.g., x313.

With this encoding, in our 5x5 example, DPLL’s UnitPropagate infers no value.
But alldifferent constraint filtering on the first three columns and the first
row v11, v12, v13, v14, v15 reveals that v11 and v12 consume values 1 and 2 and
hence v13 must be 3.

Consider an SMT system using this 3-D encoding and where T is the theory
of alldifferent. As usual in SMT, the T -solver knows what the xijk’s mean.
From time to time, one can invoke the T -solver for doing Theory Propagate, but
one should apply cheap SAT rules first: UnitPropagate, Backjump, etc. In this
case, the T -solver does incremental filtering [Rég94] but must be able to produce
explanations. In our example, the theory-propagated literal x133 (meaning v13 =
3) is entailed by { ¬x113 ¬x114 . . . ¬x135 }. 	


In this way, the specialized filtering algorithms only need to be extended for
generating explanations, but the remaining machinery can be used as it is in
DPLL(T ): one uniform language (clauses) for expressing no-goods, the conflict
analysis mechanism, etc. SAT’s heuristics and unit propagation mechanisms will
do what they are good at, which is carrying out the actual search, i.e., the
labeling. Learned lemmas help transferring knowledge from the theory to the
DPLL(X) engine, which handles it efficiently.

Challenge 13: In the previous example we have considered the alldifferent
constraint. Develop explanation-generating T -solvers for other typical global con-
straints.

Challenge 14: In the previous example, we used a complete underlying encoding
into SAT of the QGC problem. Try to exploit the same ideas, but using the
boolean part of SMT only for an incomplete encoding.
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Challenge 15: In [NO06] we have shown how to model in SMT optimization
problems (Max-SAT and Max-SMT) by expressing as an (increasingly stronger)
theory T the best solution so far in a branch-and-bound search. How can lower
bounds be more effectively applied in that framework?

6 Concluding Remark

We hope that the reader has become challenged and motivated for helping de-
velop this exciting research area and/or for applying SMT techniques and tools.
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[ES03] Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Proceedings of the
Sixth International Conference on Theory and Applications of Satisfiabil-
ity Testing (SAT) pp. 502–518 (2003)

[ILO] ILOG. ilog cplex http://www.ilog.com/products/cplex
[KRA+01] Kautz, H.A., Ruan, Y., Achlioptas, D., Gomes, C.P., Selman, B., Stickel,

M.E.: Balance and Filtering in Structured Satisfiable Problems. In: Nebel,
B. (ed.) 17th International Joint Conference on Artificial Intelligence, IJ-
CAI’01, pp. 351–358. Morgan Kaufmann, San Francisco (2001)

[MMZ+01] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff:
Engineering an Efficient SAT Solver. In: Proc. 38th Design Automation
Conference (DAC’01) (2001)

http://yices.csl.sri.com/tool-paper.pdf
http://www.ilog.com/products/cplex


18 R. Nieuwenhuis et al.

[MSS99] Marques-Silva, J., Sakallah, K.A.: GRASP: A search algorithm for propo-
sitional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

[NO05a] Nieuwenhuis, R., Oliveras, A.: DPLL(T) with Exhaustive Theory Propa-
gation and its Application to Difference Logic. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg
(2005)

[NO05b] Nieuwenhuis, R., Oliveras, A.: Proof-Producing Congruence Closure. In:
Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 453–468. Springer, Heidel-
berg (2005)

[NO06] Nieuwenhuis, R., Oliveras, A.: On sat modulo theories and optimization
problems. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121,
pp. 156–169. Springer, Heidelberg (2006)

[NO07] Nieuwenhuis, R., Oliveras, A.: Fast congruence closure and extensions.
Information and Computation 205(4), 557–580 (2007)

[NOT06] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo
Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure
to DPLL(T). Journal of the ACM 53(6), 937–977 (2006)
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Traditionally, calculi of explicit substitution [1] have been conceived as an im-
plementation technique for β-reduction and studied with the tools of rewriting
theory. This computational view has been extremely fruitful (see [2] for a recent
survey) and raises the question if there may also be a more abstract underlying
logical foundation.

Some forms of explicit substitution have been related to cut in the intuition-
istic sequent calculus [3]. While making a connection to logic, the interpretation
of explicit substitutions remains primarily computational since they do not have
a reflection at the level of propositions, only at the level of proofs.

In recent joint work [4], we have shown how explicit substitutions naturally
arise in the study of intuitionistic modal logic. Their logical meaning is embodied
by a contextual modality which captures all assumptions a proof of a proposition
may rely on. Explicit substitutions mediate between such contexts and therefore,
intuitively, between worlds in a Kripke-style interpretation of modal logic.

In this talk we review this basic observation about the logical origin of explicit
substitutions and generalize it to a multi-level modal logic. Returning to the
computational meaning, we see that explicit substitutions are the key to a λ-
calculus where variables, meta-variables, meta-meta-variables, etc. can be unified
without the usual paradoxes such as lack of α-conversion. We conclude with
some speculation on potential applications of this calculus in logical frameworks
or proof assistants.
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Abstract. In the analysis of cryptographic protocols, a treacherous set
of terms is one from which an intruder can get access to what was in-
tended to be secret, by adding on to the top of a sequence of elements
of this set, a cap formed of symbols legally part of his/her knowledge.
In this paper, we give sufficient conditions on the rewrite system mod-
eling the intruder’s abilities, such as using encryption and decryption
functions, to ensure that it is decidable if such caps exist. The follow-
ing classes of intruder systems are studied: linear, dwindling, Δ-strong,
and optimally reducing; and depending on the class considered, the cap
problem (“find a cap for a given set of terms”) is shown respectively to
be in P, NP-complete, decidable, and undecidable.

1 Introduction

Cryptography has been applied to render communications secure over an inse-
cure network for many years. However, the underlying difficulties in properly
designing cryptographic protocols are reflected by repeated discovery of logical
bugs in these protocols. As an attempt to solve the problem, there has been a
sustained and successful effort to devise formal methods for specifying and veri-
fying the security goals of cryptoprotocols. Various symbolic approaches have
been proposed to represent protocols and reason about them, and to attempt to
verify security properties such as confidentiality and authenticity, or to discover
bugs. Such approaches include process algebra, model-checking, modal logics,
equational reasoning, and resolution theorem-proving (e.g., [18,2,8,4]).

In particular, string rewrite systems have provided one of the first formal treat-
ments of security protocol analysis [12], by modeling encryption and decryption
as abstract operators. In such a setting, the secrecy property – i.e. whether a
message can be deduced by the intruder from observed communications – can
be reduced to the so-called extended word problems. The approach has been gen-
eralized to more realistic protocols by employing term rewrite rules [13,10,17],
in particular modeling the capabilities of the intruder in terms of a convergent
term rewrite system (TRS, for short); more elaborate primitives can be obtained
that way. In the analysis of cryptographic protocols using such an approach, the
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general cap problem (that we shall define shortly), formally models the possi-
bility that a passive intruder gets hold of a secret m, by using – and possibly
re-using – some of the non-public terms that (s)he captures, e.g., by eavesdrop-
ping, during a given protocol session. The issue addressed in this paper is how
general the (convergent) TRS modeling the intruder’s capabilities can be, so as
to get tractable decision procedures for solving this problem.

This paper is structured as follows: In Section 2, after some preliminaries. we
formally define the general cap problem, as well as a simpler variant called just
the cap problem. Section 3 shows in some detail how these cap problems can be
applied to the formal security analysis of protocols. In Section 4, the cap problem
is shown to be decidable for optimally reducing string rewrite systems. Section 5
studies the cap problem for (convergent) dwindling TRS R; it is shown to be
decidable in polynomial time; if the TRS R is assumed left-linear in addition,
then we show that the set of all irreducible treacherous terms is a regular tree
language. Section 6 establishes the undecidability of the cap problem for (con-
vergent) linear, optimally reducing TRS, by reduction from the halting problem
for 2-counter machines. In Section 7, we turn our attention to the general cap
problem and show that it is NP-complete for special or dwindling TRS. The
general cap problem is then studied with respect to rewrite systems R called Δ-
strong, more general than dwindling systems; and the decidability of the general
cap problem wrt such systems R is shown (Section 8); possible applications are
that of modeling homomorphic encryption and the blind signature protocol.

2 Notation and Preliminaries

We assume that the reader is familiar with the well-known notions of terms,
rewrite rules and rewrite systems over a given (ranked) signature Σ, and a
(possibly infinite) set of variables X . For any term t, the set of all its positions
will be denoted as Pos(t); if q ∈ Pos(t) then t|q will denote the subterm of t at
position q; and following Huet [15], the term obtained from t by replacing the
subterm t|q by a term t′ will be denoted as t[q ← t′]. A similar notation will also
be used for the substitution of variables in t by terms. The notions of reduction
and of normalization of a term by a rewrite system are assumed familiar too, as
well as those of termination and of confluence of the reduction relation defined
by such a system on terms. A rewrite system is said to be convergent iff the
reduction relation it defines on the set of terms is terminating and confluent.

The Cap Problems: Let R be any convergent TRS over some ranked signature
Σ and a variable set X . We assume a ground constant m ∈ Σ, referred to as the
secret, and a subset G of Σ�{m} referred to as the intruder repertoire or public
symbols. It is assumed that G contains all the root symbols of the left hand sides
of all the rules in R and at least one constant, and also that m appears nowhere
in the rules of R. (“R is free from m”). Symbols which are not in the intruder
repertoire are often referred to as private symbols. A term that contains only
public symbols (and variables) will be said to be a public term; it is said to be
private, or non-public, otherwise.
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We then extend the signature by adding a set {�, �′, �′′, · · · }, of special vari-
ables referred to as hole variables , or just holes; the symbols �, �1, �2, · · · (with
or without primes) will be used to designate any of the hole variables. A cap,
or a cap-term, is then defined as a public term such that the only variables
in it are hole variables. Caps are often represented as t(�1, . . . , �n), where the
�i, 1 ≤ i ≤ n, are the distinct hole variables of t, each of which may occur more
than once. A cap with exactly one hole variable occurrence, at a position q, is
often more conveniently denoted as t[ ]q. The problem referred to in this paper
as the general cap problem, is the following:

Instance: A convergent TRS R with the properties mentioned above, an in-
truder repertoire G, and a finite set S of non-public ground terms over Σ,
at least one of which contains the secret m.

Question: Is there a cap t(�1, . . . , �n) over the intruder repertoire G, such that
a term t[�1 ← s1, · · · , �n ← sn], with the si ∈ S (not necessarily all distinct),
can be R-reduced to m?

If this question admits a positive answer, the multiset {s1, · · · , sn}, as well as
the set S itself, will be said to be treacherous , wrt R. The following simpler
version of the problem, where the cap has just one hole variable occurrence, is
referred to as the cap problem in the sequel:

Instance’: A convergent TRS R with the properties mentioned above, an in-
truder repertoire G. and a ground term s containing the secret m.

Question’: Is there a cap t[ ]q over the intruder repertoire G, such that the term
t[q ← s] reduces to m?

This simpler version models the possibility that the intruder gets hold ofm with-
out re-using any of the intermediary terms captured during a protocol session.
The general cap problem will be studied only in the later sections of this paper.
We shall first study the (simpler version of the) cap problem, for the following
classes of rewrite systems R: string rewrite systems that are either special or op-
timally reducing, and term rewrite systems that are either dwindling or optimally
reducing. These notions are formally defined as follows:

i) R is special (or pure) iff the rhs of every rule in R is a variable.
ii) R is dwindling iff, for every rule l → r ∈ R, r is a proper subterm of l.
iii) R is optimally reducing iff, for every l → r ∈ R, and for any substitution

θ on X for which θ(r) is reducible, there is a proper subterm s of l such
that θ(s) is reducible1.

The reason for considering these classes is that, in the formal models of several
protocols, term rewrite systems that model the intruder capabilities often belong
to these classes. Note that the above three notions are decreasingly restrictive.
It is decidable whether a given TRS R is optimally reducing: a non-deterministic
polynomial time decision procedure is given in [16].

Recall that a string rewrite system over an alphabet Σ can be seen as the
particular case of TRS where the symbols in Σ are all of rank 1. For redactional
1 This notion was first introduced in [16], and has been extended recently in [9].
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reasons, we shall agree to view, in the sequel, any string u over Σ as a term over
one variable derived from the reversed string of u; i.e., if g, h ∈ Σ the string gh
will be seen as the term h(g(x)).

3 Security Analysis and the Cap Problem

String Case: We shall consider first the approach initiated by Dolev and
Yao [12] in 1983, for the security analysis of some two-party public key pro-
tocols. The protocols are represented as sequences of strings on an alphabet of
unary operators. They are defined as insecure if and only if a certain initial mes-
sage exchanged between the parties can be normalized to the empty string by
the intruder rewrite system, by successively adding on caps to the initial mes-
sage, where each cap is built by using the intruder capabilities. Book and Otto
observed, e.g. in [7], that the main technical result behind the Dolev-Yao result
can be formulated as follows:

Let R be a convergent special string rewrite system. Then for any regular
language L, the set {x | ∃y ∈ L : y →∗ x}, of descendants of strings in L, is
a regular language. A non-deterministic finite automaton (NFA) accepting
this language can be constructed in time polynomial in the total size of R
and the size of the NFA.

Term Case: When considering cryptographic protocols defined with operators
of arity greater than 1, the extension of cap problems from strings to terms is
still relevant for security analysis. Our approach is basically motivated by the
logical approach to security (e.g., [18,2,8]).

Consider the following elementary ping-pong protocol introduced in [12]:
A→ B: A,B, {M}kb

B → A: B,A, {M}ka

An intruder impersonating B can mount the following easy attack:
A→ I(B): A,B, {M}kb

I → B: I, B, {M}kb

B → I: I, B, {M}ki

This can be expressed using encryption and decryption functions e and d re-
spectively and with kb and ki as the keys of B and I respectively. The in-
truder’s initial knowledge includes b, i, kb, ki. At the end of the protocol I gets
e(d(e(m, kb)), kb), ki). Modulo the convergent term rewrite system I, consisting
of the following rules:

d(e(y, u), u)→ y, e(d(y, u), u)→ y

this is equivalent to e(m, ki). However, this still has not shown that the intruder
can get hold of m. For that we have to find a suitable cap for e(m, ki) so that
the capped term will normalize to m.

For the case where messages are terms, we shall assume that the intruder has
been able to capture some messages from the protocol (we do not study further
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how the intruder has interacted with the protocol to get these messages). We
will rather focus on the problem of finding caps, and on its complexity, for given
intruder knowledge, and given secret. The cap problem is equivalent to what
is considered in the literature as a security problem in presence of a passive
intruder. (It is sometimes referred to as the deduction problem; e.g., [1].)

4 The Cap Problem in the String Case

As we mentioned earlier (Section 3), in the string case the functioning of the
protocol is modeled as a regular word grammar, over some given alphabet Σ;
the intruder is assumed active: (s)he is allowed to use the protocol rules for
capturing the secret; and the system R modeling the intruder capabilities is
assumed convergent. We have then the following extension of the cap problem,
the decidability of which is known to be equivalent to deciding protocol insecurity
in this case (of an active Dolev-Yao intruder):

Proposition 1. The following problem is decidable:

Instance: An optimally reducing convergent string rewrite system R over an
alphabet Σ, an R-irreducible string α, and a regular language L ⊆ Σ∗.

Question: Is there a string β ∈ L such that αβ →∗
R λ (the empty string) ?

Proof. Define L′ = α.L; then there exists a β ∈ L such that α.β →∗
R λ, iff

λ ∈ R!(L′) = the set of all R-irreducible descendants of L′. Thus the above
proposition can be derived by showing that, for any regular language L over Σ,
the set R!(L) of all R-irreducible descendants of L is a regular language too.
This is done in the following 3 lemmas.

Lemma 1. Let R be an optimally reducing convergent string rewrite system
over the alphabet Σ. Then every congruence class modulo R is a deterministic
context-free language.

Proof. A deterministic push-down automaton (DPDA) can be constructed for
each congruence class. We describe the DPDA in terms of the following transi-
tion system on tuples from Σ∗ × Σ. The first component of the tuple has the
contents of the stack from bottom to top, and the second component has the
current tape symbol. The main loop invariant is that the stack contains an irre-
ducible string – in particular the normal form of the string read so far:

(w, a) �→ (wa, ε) if no suffix of wa is a redex.
(xl′, a) �→ (xr, ε) if l′a→ r is a rule

Checking the condition – whether attaching the tape symbol to the stack
contents will create a redex – can be incorporated into the finite control of the
DPDA; e.g., by building a trie of all the left-hand sides. 	


Lemma 2. Let R be an optimally reducing convergent string rewrite system over
the alphabet Σ and let # be a symbol not in Σ. Then the language
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{x#y | x, y ∈ Σ∗, yrev is R-irreducible, x→!
R yrev}

is context-free. (yrev is the reverse string of y.)

Proof. The main idea is the same as in the proof of the previous lemma. We
construct a DPDA that will scan an input string of the form x#y from left to
right, and will have the normal form of x in the stack when it reaches the tape
cell that contains the # symbol. From then on, the machine pops the stack when
the symbol at its top and the tape symbol agree. 	


Lemma 3. Let R be an optimally reducing convergent string rewrite system
over the alphabet Σ, and let L ⊆ Σ∗ be a regular language. Then the language
R!(L) = {u | ∃v ∈ L : v →! u} is a regular language.

Proof. This follows from the preceding lemma, and the proof is essentially the
same as that of Theorem 2.5 in [6]. 	


5 Deciding the Cap Problem for Dwindling TRS

We give here a recursive algorithm for solving the cap problem, when the given
TRS R is dwindling. With the notation of Section 2, we may assume, without
loss of generality, that both the given term s (containing the secret m) and the
cap to be found are R-irreducible. Suppose t[ ]q is a minimal cap (that allows one
to deduce the secret m). Let t′ = t[q ← s]. Let p be the innermost position where
t′ is reducible by a rule, say l → r. Clearly we have p ≺ q (for the prefix-ordering
‘�’ on positions). Thus t′|p = σ(l) for some substitution σ. Let p′ be a position
in l such that l|p′ = r. Thus σ(l)|p′ = σ(r), and t′|p·p′ = σ(r). Now two cases
have to be considered.

case (i) p · p′ � q: In this case t′|p reduces to t′|p·p′ . Hence t[p ← t|p·p′ ]q will
be a smaller cap (with a hole at some position above q), so this case need not be
considered. The sub-case where p · p′ = q for every possible redex is one where
there is no cap, and one exits with failure.

q

    

p
p.p’

t

s

Case (i)

q

s
p.p’

t

p

Case (ii)
The case where p · p′ and q are incomparable need not be considered since the
cap is irreducible (and cannot contain any occurrence of m); so we go to:

case (ii) q ≺ p · p′: Let q = p · q′ and p′ = q′ · q′′. We have here: q′ ≺ p′,
σ(l|q′) = s. And σ(l) reduces to s|q′′ which is a proper subterm of s. Thus s is
treacherous if and only if so is s|q′′ .
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We thus derive a procedure for checking whether a term is treacherous:
1. If s = m RETURN true;

else non-deterministically choose a rule l → r and a proper subterm l′ of l
that is a proper superterm of r; let l′ = l|q.

2. Let θ = mgu(s =? l′).
3. If θ(l[q ← �]) has symbols which are not in the intruder repertoire,

or if θ(r) does not contain m, then fail;
else set s := θ(r) and GOTO 1.

This can also be done in a bottom-up (dynamic programming-like) way.
Clearly m itself is treacherous. Now suppose all proper subterms of s have been
tested for treachery and the results recorded. Testing whether s itself is treach-
erous can then be done by modifying Step 3 above to:

3bis. If θ(l[q ← �]) has symbols which are not in the intruder repertoire, fail;
else check whether s := θ(r) is treacherous: if yes RETURN true else fail.

Making this deterministic requires that each such l′ be tried in Step 1. This
could take O(|R||s|) time in the worst case, where |R| is the total size of the
term rewrite system. Thus the total complexity is O(|R||s|2).

5.1 Case of Left-Linear Dwindling TRS: A Regularity Result

Proposition 2. Let R be a left-linear, dwindling and convergent TRS. Then the
set of all irreducible treacherous terms, wrt R, is a regular tree language.

Before proving this proposition, let us observe that the hypothesis of left-linearity
is essential, as the following example shows: consider the special TRS formed of
the unique rule: f(g(x, x, y)) → y, where f is public; then, clearly g(t1, t2,m) is
treacherous if and only if t1 = t2. Note also that the hypothesis of irreducibility
is also needed, as is seen with the example of the string rewrite system with a
single rule f g → λ; the set of all treacherous terms here is non-regular, since
its intersection with f∗g∗ is the language {fn gm | n ≥ m}; but the set of all
irreducible treacherous terms is {fn | n ≥ 0} = f∗.

The above proposition is proved via the following lines of reasoning:

(i) we construct a regular tree grammar G that generates a subset of the set of
all treacherous terms wrt R, which includes all irreducible treacherous terms;

(ii) since R is assumed left-linear, the set IRR(R) of all ground terms in R-
normal form is known to be a regular tree language (cf. e.g., [14]);

(iii) The set of all irreducible treacherous terms is then obtained as the intersec-
tion of the language of G with IRR(R).

The construction of the tree grammar is based on the fact that, when the TRS
R is (dwindling, and) also left-linear, we can reformulate the algorithm of the
previous section more precisely, as follows:

1’. Non-deterministically choose a rule l→ r and a proper subterm l′ = l|q of l,
that is a proper superterm of r, with the additional property that (l[q ← �])
has all its symbols inside the intruder repertoire.
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2’. Let θ = mgu(s =? l′).
3’. Set s := θ(r), and GOTO 1’.

See [3] for the details of the construction of the tree grammar.

6 Undecidability Results

Unfortunately the cap problem is undecidable even for optimally reducing, lin-
ear, and convergent TRS: we prove that there is a fixed optimally reducing,
linear, and convergent TRS for which the cap problem is undecidable. The proof
is by reduction from the halting problem for 2-counter Minsky machines. A con-
figuration of such a 2-counter machine, at any given stage of a computation, will
be seen as a triple (C1, ql, C2) where l is the (label of the) next instruction to
execute, and Ci, i = 1, 2, are the current values of the two counters.

The halting problem for any program P of such a machine will be encoded as
a cap problem over an optimally reducing TRS, which is linear and convergent.
For doing that, any state symbol ql will be seen as a unary function symbol. In
addition we introduce further function symbols f, s of rank 1 and c of rank 3, and
constants m, 0. The constant m stands for some secret message, 0 encodes the
natural integer zero, s encodes the successor function on integers, and c encodes
configuration triples. The following rules do the encoding (where l, l′ stand for
suitable instruction labels, 0 (resp. L) being the label for start (resp. halt)):
Initial and final configurations (resp. with given k, p, and k′, p′):

c(sk(0), q0(m), sp(0)), c(sk′
(0), qL(m), sp′

(0))
Incrementation of counter 1 or 2:

f(c(x, ql(z), y))→ c(s(x), ql+1(z), y), f(c(x, ql(z), y))→ c(x, ql+1(z), s(y))
Conditional decrementation of counter 1 or 2:

f(c(s(x), ql(z), y))→ c(x, ql+1(z), y), f(0, ql(z), y))→ c(0, ql′(z), y).
f(c(x, ql(z), s(y)))→ c(x, ql+1(z), y), f(x, ql(z), 0))→ c(x, ql′(z), 0).

At STOP, release the secret m: f(c(sk′
(0), qL(z), sp′

(0)))→ z.
The role played by f is to ensure that this rewrite system is terminating. The

cap problem over this rewrite system – which is obviously linear and optimally
reducing – with {0, f, q1, . . . , qN} as the intruder repertoire, obviously encodes
the halting problem for the 2-counter machine programs. We deduce that the
cap problem is undecidable even for linear and optimally reducing systems.

7 The General Cap Problem

The definition of the notion of cap with one hole, as given in Section 2, does not
allow the intruder to re-use terms. For instance, consider the rewrite system R
with a single rule:

g(f(x, a), f(y, a)) → x,

where g is in the intruder repertoire, but f and a are not. For the definition
of cap with one hole, f(m, a) is not treacherous. But if f(m, a) can be re-used
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then m can be recovered since g(f(m, a), f(m, a)) reduces to m. In other words,
there is a (non-linear) cap t(�) = g(�, �) such that t[� ← f(m, a)] →!

R m. Also,
there could be more than one term containing m that the intruder may be able
to use; this explains that the general cap problem allows more general contexts,
with more than one hole.

We show now that the general cap problem is NP-complete for dwindling (and
convergent) TRSs.

Proposition 3. The general cap problem is NP-hard, even for special TRS.

Proof. The proof is by reduction from the 3-colorability problem. Let (V,E) be
any arbitrarily given undirected graph. Introduce a function symbol g of rank
|E|+ 1, a symbol f of rank 2, and a symbol h of rank 1. Associate a variable xj

to each node vj in V , and represent every edge ei = (vj , vk) in E (joining the
two nodes vj , vk in the graph) by the term ti = f(xj , xk); finally let B, G and
R be constants that correspond to the 3 colors. We then consider the pure TRS
formed of the following single rule:

g(t1, . . . , t|E|, h(u))→ u

where u is a new variable, not appearing in any of the terms ti. Assume that g is
the only symbol in the intruder repertoire, i.e., all symbols other than g are pri-
vate. Let f(B,R), f(R,B), f(G,R), f(R,G), f(G,B), f(B,G) and h(m) be the
terms known to the intruder. Then it is not hard to see that m can be obtained
by the intruder (by plugging in a treacherous set of terms in g(�1, · · · , �(|E|+1)),
if and only if the graph can be colored with the 3 colors B,R,G. 	


We shall be showing below that the general cap problem is in NP for dwindling
TRS. A few preliminaries are needed for proving that.

7.1 The I-closure of a Set of Terms

Given a finite set S of private ground terms, we define the set of I-constructible
terms, referred to as the I-closure I(S) of S, as the smallest set such that: (i)
S ⊆ I(S), (ii) If f (p) is a public function symbol and s1, . . . sp are I-constructible
terms, then f(s1, . . . sp) ∈ I(S), and (iii) Nothing else is in I(S).

(The I refers to the intruder repertoire.) It is not hard to see that I(S) is a
regular tree language for any given finite set S (see e.g., the proof of Proposition 7
below). Define a set of terms Γ = {t1, . . . , tn} to be I-independent if and only
if for all ti, we have ti �∈ I(Γ \ {ti}); it is easy to see then, that from every
finite set S of terms we can extract an I-independent subset, with the same
I-closure. A ground substitution θ is I-independent if and only if Ran(θ) is an
I-independent set, and ∀vi, vj ∈ Dom(θ) : θ(vi) = θ(vj)⇔ vi = vj .

From the definitions, we directly get the following: If S is an I–independent
set of terms, then a term s is in I(S) if and only if there is a cap t(�1, . . . , �n)
and an I-independent substitution θ = [�1 ← s1, . . . , �n ← sn], with si ∈ S for
all i, such that s = θ(t). The following property is easily established too:
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Proposition 4. Let S be a treacherous set of terms and let t(�1, . . . , �n) be a
cap for S such that a term t[�1 ← s1, · · · , �n ← sn], with the si ∈ S, can be R-
reduced to m. If S′ is an I-independent subset of S with I(S) = I(S′), then there
is a cap t′(�′1, . . . , �′k), and an I-independent substitution θ with Range(θ) ⊆ S′

such that θ(t′) = t[�1 ← s1, · · · , �n ← sn].

As a corollary,we deduce that every set of treacherous terms has an I-independent
treacherous subset. The proofs of the following two propositions can be found
in [3].

Proposition 5. Let θ = [x1 ← s1, . . . , xn ← sn] be an I-independent substitu-
tion assigning non-public terms si to variables xi, 1 ≤ i ≤ n. Then θ unifies two
public terms t1 and t2 if and only if t1 = t2.

Proposition 6. Let l → r be a rewrite rule, s be a term such that Pos(l) ⊆
Pos(s) and θ be a ground substitution such that θ(s) is an instance of l. Then
either s is an instance of l or there are distinct subterms s1 and s2 of s such
that θ(s1) = θ(s2).

Corollary 1. Let l→ r be a rewrite rule, s be a public term such that Pos(l) ⊆
Pos(s) and θ be an I-independent ground substitution such that θ(s) is an in-
stance of l. Then s is an instance of l.

Proof. By Proposition 6 there must be distinct subterms s1 and s2 of s such
that θ is a unifier of s1 and s2. But by Proposition 5, s1 and s2 must be identical
which is a contradiction. 	


Proposition 7. Let S be an I-independent set of ground terms and t any given
term. Then the problem of checking whether t has an instance in I(S) is in
NTIME(|t| + |S|) where |S| = sum of the sizes of terms in S.

Proof. We represent the given set S of ground terms as a (not necessarily rooted)
dag G = (V,E); let V = {n1, . . . , nl}. We define the following mapping with each
node in V :
ν(ni) = (ni, 1) if the term at ni is in S,

= (ni, 0) otherwise.
Each such pair (ni, b) will be seen as a state of a tree automaton A; we also

add a distinguished state qacc, which will be the only accepting state of A. For
all nodes nj , if f (l) is the symbol at the node and nj1 , . . . njl

are the nodes
corresponding to the ordered arguments of f (not necessarily distinct), then we
form a transition rule of A:

f(ν(nj1), . . . , ν(njl
)) → ν(nj).

If ν(nj) = (nj , 1), then we also form the rule:

f(ν(nj1), . . . , ν(njl
))→ qacc.

Finally, for all public symbols g, we add the transition rule:

g(qacc, . . . , qacc)→ qacc.



30 S. Anantharaman, P. Narendran, and M. Rusinowitch

The size of the automaton A is obviously linear in |S|. The automaton is
non-deterministic, but it is easily checked that every term in I(S) has a unique
accepting run. Now consider the problem of checking whether a given term t has
an instance in I(S). If p1, . . . , pn are the variable positions of t, then we guess
the states at each position, say q1, . . . , qn respectively;

1. we have then to verify that this state assignment can be completed into an
accepting run for t; and

2. for each variable x ∈ Var(t), if px1
, . . . , pxj

are the positions where it occurs
and qx1

, . . . , qxj
the corresponding states, then check whether there is a common

term t′ that all these states “inhabit” — i.e., each state appears at the root of
a run of A on the term t′.

Checking this latter requirement (although EXPTIME-hard, in general) is
very easy in our case: the only way that qx1

, . . . , qxj
can appear at the roots of

runs for the same term, is if one of the following holds:
(a) they are all the same, or
(b) {qx1

, . . . , qxj
} = {qacc, (n, 1)} for some n ∈ V . 	


Another way of stating the above conditions (a) and (b), is as follows: for
each variable x ∈ Var(t), if px1

, . . . , pxj
are the positions where it occurs and

qx1
, . . . , qxj

the corresponding states, then {qx1
, . . . , qxj

} is:
(a’) either {qacc};
(b’) or {ν(ni)} for some ni ∈ V ;
(c’) or {qacc, (n, 1)} for some n ∈ V .

This enables us to formulate the following NP-algorithm: for each variable that
occurs more than once, guess which of the conditions (a’), (b’) or (c’) will hold.
If (a’) then replace x with a public constant c; if (b’) or (c’) then replace x with
the term corresponding to the node. Finally, a linear term s has an instance in
I(S) if and only if s matches with a term in S, or s = f(s1, . . . , sm), where f
public, and each si, 1 ≤ i ≤ m, has an instance in I(S).

The deterministic version of this algorithm (i.e., exhaustive search instead of
guessing) has time complexity O(3k (|t|+ |S|)) where k is the number of variables
that occur more than once. Thus we have a polynomial time algorithm, for the
case where the number of variables that occur more than once is fixed in advance.

Proposition 8. Let S be an I-independent set of ground terms, and t any given
term. Then checking whether t has an instance in I(S) can be done in time
O(3k (|t| + |S|)), where k = number of variables occurring more than once in t.

7.2 A Procedure for the General Cap Problem

We propose an inference rule and a saturation procedure in order to derive the
secret m from a given set S of non-public terms. The procedure can be shown to
terminate for all convergent term rewrite systems. It is not complete in general;
however, completeness can be shown for dwindling, and Δ-strong TRSs. And in
the dwindling case, the algorithm will be shown to run in NP time.
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Let FPos(t) be the set of non-variable positions in any term t: FPos(t) =
{ p | p ∈ Pos(t), t|p is not a variable }. In the proof details below, we shall be
denoting by ‘�’ the subterm ordering on terms, as well as the prefix ordering on
the positions on a term, interchangeably. The inference rule is as follows:

S � {s} (l, p)
S ∪ {s, σ(r)}

where (l → r) ∈ R, σ = mgu(s =? l|p), p ∈ FPos(l),
σ(r) ≺ s, and σ(l) has an instance in I(S).

The set S is said to be saturated iff it doesn’t grow under any application of
this inference rule. (Clearly S is treacherous if the saturated set contains m.)

Lemma 4. Any set of private terms S can be saturated in finitely many steps.

Proof. One way to see this is to view the inference step as an ordered rewriting
step using the rewrite rules R′ = { (l|p → r) | (l → r) ∈ R, p ∈ FPos(l) }. Each
term has only finitely many descendants modulo R′, so the saturation process
cannot lead to an infinite set of terms. 	

The saturation procedure given above is incomplete for general TRS and arbi-
trarily chosen simplification orderings �; cf. [3].

7.3 An NP-Decision Procedure for dwindling TRS

Proposition 9. The general cap problem is in NP for any dwindling (conver-
gent) term rewrite system R.

Proof. The proof uses the following two lemmas (notation of Section 2):

Lemma 5. Let R be a (convergent) dwindling TRS and let S be a saturated set
of private terms. Then S is treacherous if and only if m ∈ S.

Proof. Assume the contrary. Let S be a saturated set of private terms that is
treacherous but does not contain m. Let t′ be a �-minimal term in I(S) whose
irreducible normal form is m. By Proposition 4 there must be a cap t(�1, . . . , �k)
and an I-independent substitution θ = [�1 ← s1, . . . , �k ← sk], whose range is
a subset of S, such that t′ = θ(t). Suppose t′ is reducible by a rule l → r, and
t′|p = σ(l) for some substitution σ. Let p1, . . . , pn be the variable positions of l,
and let πi = p · pi for i = 1, . . . , n. Now l → r is a dwindling rule, i.e., r = l|p′

for some position p′; there are two cases to be considered.

(i) p.p′ is a position in t. Then t[p ← t|p·p′ ] is in I(S), which contradicts the
minimality of t′.

(ii) There is a variable �i at some position qi in t such that qi ≺ p · p′; hence si

unifies with a subterm of l. (The situation is like in case (ii), Section 5.)
Now, since S is assumed to be saturated, σ(r) has to be already in S. Thus
t′[p← σ(r)] is in I(S) too, which is a contradiction. 	


In the light of the above proof, we can modify the inference rule for the dwindling
case to:
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S � {s} (l, p)
S ∪ {s, σ(r)}

where (l → r) ∈ R, σ = mgu(s =? l|p), p ∈ FPos(l),
r is a proper subterm of l|p, and σ(l) has an instance
in I(S).

Let ||R|| =
∑

(li→ri)∈R

|li|. We then have:

Lemma 6. The saturation of any given set of private terms S can be done in
NTIME(φ(|S|, ||R||)), where φ is a polynomial with two arguments.

Proof. Every term added under an inference is a proper subterm of some term
in S; by Proposition 7 each inference step can be performed in NP time. 	


If the number of variables that occur more than once in the lhs of the rules in
R is fixed, we get a polynomial-time algorithm by Proposition 8; and this gives:

Proposition 10. Let k be a fixed natural integer, and R a dwindling TRS such
that, for each l → r ∈ R the number of variables in V ar(l) � V ar(r) that occur
more than once in l is less than k. Then, the general cap problem over R, and a
given set of private terms S, is decidable in polynomial time over ||R|| and |S|.

8 Δ-Strong Intruder Theories

Let R0 be any given convergent intruder TRS. An n-ary public symbol f is said
to be transparent for R0, or R0-transparent , if and only if, for all x1, . . . , xn,
there exist cap-terms t1(�), . . . , tn(�) such that ti[� ← f(x1, . . . , xn)] →∗

R0
xi,

for every 1 ≤ i ≤ n. For instance, the public function p (“pair”) is transparent
for the TRS: π1(p(x, y)) → x, π2(p(x, y)) → y, where π1 and π2 are public.

It is clear that if the general cap problem is decidable for R0, then so is
checking R0-transparency. We shall consider public constants to be transparent
for any intruder system R0. A public function symbol is R0-resistant iff it is
not R0-transparent. Private functions will be considered to be resistant, for any
intruder system R0. By definition, an R0-resistant term is one whose top-symbol
is R0-resistant.

Let R be any convergent intruder TRS, and � a simplification ordering con-
taining R. (Note: the notation ‘�’ for the term ordering should not cause any
confusion with the prefix-ordering for the positions on terms, since ‘�’ is a simpli-
fication ordering.) We assume that � satisfies the block-ordering property: every
private symbol is higher than every public symbol under �. We shall denote by
Δ a subsystem consisting of (some of the) dwindling rules in R. A rewrite rule
l → r is said to be Δ-strong, wrt the simplification ordering �, if and only if
every Δ-resistant subterm of l is greater than r wrt �. The intruder TRS R is
said to be Δ-strong wrt � if and only if every rule in R�Δ is Δ-strong wrt �.

Lemma 7. Let R be a convergent intruder TRS, Δ a convergent dwindling sub-
system of R, and suppose R is Δ-strong wrt a simplification ordering �, total on
ground terms, that contains R. Then, any set S of private terms that is saturated
(for the inference rule of Section 7.2), is R-treacherous if and only if m ∈ S.
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The proof is very similar to that of Lemma 5. The details are not given here for
want of space; see [3]. We thus derive:

Proposition 11. The following problem is decidable:

Instance: A convergent TRS R over the intruder repertoire, Δ a dwindling,
convergent subsystem of R, a simplification ordering � wrt which R is Δ-
strong, a free constant m, and a finite set S of irreducible non-public ground
terms, at least one of which contains m.

Question: Is there a cap-term t(�1, · · · , �k) such that t[�1 ← s1, · · · , �k ← sk],
with the si ∈ S (not necessarily all distinct), can be R-reduced to m?

Applications. (i) One can handle the cap problem for homomorphic encryption
(i.e., ‘encryption’ e distributes over ‘pair’), by the Δ-strong approach, with the
following convergent TRS R; the rules to the left form Δ; d, e are Δ-resistant:

π1(pair(x, y)) → x
π2(pair(x, y)) → y

d(e(x, y), y) → x
e(d(x, y), y) → x

e(pair(x, y), z)→ pair(e(x, z), e(y, z))
d(pair(x, y), z) → pair(d(x, z), d(y, z))

Related results were obtained in [10], with a more complex proof (but with a
polynomial time algorithm).

Homomorphic encryption and signature have several applications, such as e-
voting, auction, and private information retrieval.

(ii) The blind signature protocol can be modeled by rewrite rules of the form
U(SA(BA(x, y)), y) → SA(x), where BA is the blinding function (of B wrt to
signer A), SA is the signing function of A, and U is the unblinding function.
Such systems are covered by the Δ-strong approach, by setting BA � SA, for
every signer A. One can also handle Block-Cipher related theories, such as the
one obtained by adding the rule split(e(pair(x, y), z))→ e(x, z) to the dwindling
system Δ of the previous example (i).

Remark. No polynomial upper bound can be given for the number of terms
added to S, under saturation, in the Δ-strong case (unlike in Lemma 6 for the
dwindling case). It is possible to show that the general cap problem for Δ-strong
intruder theories is PSPACE-hard, by a reduction from the membership problem
for labeled bounded automata (LBA).

9 Related Works, Conclusion

In [11], the authors have studied intruder theories given by convergent public-
collapsing systems. They give an NP-decision procedure for protocol insecurity
in the case of an active intruder. In [1], the authors present an algorithm for
the general cap problem for an intruder given by a convergent dwindling rewrite
system. They in fact considered the more general static equivalence problem,
and their algorithm was proved to be polynomial when the size of the rewrite
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system is fixed. This work has been extended by [5] to the insecurity problem
for active intruders; but the author does not give any complexity result.

We have shown that the extension of even the (single hole) cap problem to
the slightly more general class of optimally reducing, (convergent) and linear
TRS leads to undecidability; but our decidability result for such systems in
the string rewriting case improves upon the results of Book and Otto [7]. The
NP-complexity bound established for the general cap problem wrt dwindling
TRS, can be seen as adding precision to some results of [1]; actually, our com-
plexity result of Proposition 10, for the general cap problem over such systems, is
stronger than the corresponding result of [1]. We have also given an algorithm for
the general cap problem for a class of intruder theories not considered in [11,1,5],
namely the Δ-strong one, thereby deriving a new security result for passive
intruders. In [10], a deduction problem analogous to the general cap problem is
investigated, by using specific deduction rules for encryption and pairs (unlike
ours), and it is unclear how the results can be compared.

The decidability results derived in this paper cover several theories of inter-
est for security protocols. It would be of interest to extend them to AC-rewrite
systems, in order to capture important theories comprising AC-operators (e.g.,
abelian groups). It would be important too, to try to lift our results to cover the
case of active intruders, by integrating constraint solving and semantic unifica-
tion algorithms.
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Abstract. We present the Tom language that extends Java with the
purpose of providing high level constructs inspired by the rewriting com-
munity. Tom furnishes a bridge between a general purpose language and
higher level specifications that use rewriting. This approach was moti-
vated by the promotion of rewriting techniques and their integration in
large scale applications. Powerful matching capabilities along with a rich
strategy language are among Tom’s strong points, making it easy to use
and competitive with other rule based languages.

1 Introduction

Term Rewriting provides a theoretical framework that is very useful to model,
study, and analyze various parts of a complex system, from algorithms to running
software. During the last 20 years, there were many successful attempts in un-
derstanding, certifying, and proving properties of software, such as termination
or confluence.

Term Rewriting is also a great tool for building software. Following the de-
velopment of Lisp, the first equational interpreters, OBJ and EQI were intro-
duced in 1975 by J. A. Goguen and M. J. O’Donnell. Many tools have
integrated the notion of term rewriting in their implementation, among them,
let us mention Reve 1984, ML 1985, Clean 1986, RRL 1988, ASF+SDF 1989,
Spike 1992, ELAN 1993, Larch Prover 1993, Caml 1993, Otter 1994, Maude 1995,
CafeOBJ 1995, CiME 1996, DMS 1997, Stratego 1998, Hats 1999, Tom 2001,
etc. Some of them are not only tools which use the notion of term rewriting, but
general purpose programming languages whose semantics and execution mecha-
nism are fully based on the notions invented, defined, and studied by the rewrit-
ing community: term, pattern matching, equational theory, rewrite rule, strategy,
etc. to mention just a few of them.

Throughout the course of 10 years we developed the ELAN system [3]. We
integrated some of the best algorithms to implement pattern-matching, rule
based normalization, and non-deterministic computations. As a result, ELAN
is certainly, along with Maude [8], one of the most established term rewrit-
ing based implementations which efficiently compiles associative-commutative
rewriting combined with non-deterministic strategies. This was a very fruitful
experience and it taught us many lessons. One of them is that implementing
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a good term data-structure is difficult, data conversion (also known as mar-
shalling) is often a bottleneck, integrating built-in data-types such as integers
or doubles is not so easy, mutable data-structures, such as arrays, are essential
for the implementation of efficient data-structures like hash-tables. But one of
the most important things we learned is that even if efficiency is important to
make our technology credible, integration capabilities are even more important
to make our research widely used both in academic and industrial projects.

In 2001 we started the design of a new language called Tom [12], available
at http://tom.loria.fr/, whose goal was to pursue the promotion of term
rewriting by making our concepts and techniques more easily available. One
solution could have been to increase our implementation efforts by providing
more data-structures, more libraries, more input/output facilities, more threads,
more native interfaces, more graphical user interfaces, more, more, more. But
we have to admit that these are difficult tasks and that many other languages
already do that very well. In fact, this is not our main business. Therefore, we
chose another approach: make our technology available on top of an existing
language. This concept is called Formal Island [1].

In a first possible scenario, we start from an already existing application and
our goal is to implement new functionalities, or re-implement some old ones,
using rewriting. The expected result is a more concise and abstract description,
and the possibility to reason about this new piece of code. In this case, the data-
structure used by the application are already defined. We cannot translate them
forth and back before and after each rewrite step, this would introduce unaccept-
able marshalling costs. Behind the notion of formal island there is the notion
of formal anchor, also called mapping, which describes how a concrete data-
structure can be seen as an algebraic term. This idea, related to P. Wadler’s
views, allows Tom to rewrite any kind of data structure, as long as a formal
anchor is provided. In a second scenario, the application is both specified and
implemented at the same time, using rewrite rules. In that case, the system
should be easy to use: the definition of an algebraic signature, the definition of
rules, and that’s all! In this paper we focus on this second approach, which is
exactly what Tom provides when the underlying host language is Java.

The paper is organized as follows. In Section 2, we present how term rewriting
is implemented and integrated into Java. Section 3 focuses on the strategy lan-
guage and its control mechanism. Section 4 exposes meta-programming features
added to the strategy language for managing non-deterministic computations
and for modifying strategies at runtime. The two following sections present re-
spectively some key details of the Tom implementation and some significant
applications. Section 7 and 8 present related work and conclude.

2 Implementing Term Rewriting

Term rewriting systems are mostly concerned with computing reduced forms of
a ground term wrt. a set of rules. To this end, the Tom language allows the
definition of many-sorted signatures that are used to generate correctly typed
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algebraic terms. Further on, a rewrite system based on syntactic or equational
pattern matching can be defined and applied on these terms.

First order terms. Similarly to other rule based or functional languages, Tom

provides a construct to define many-sorted algebraic signatures:
module Peano
Nat = zero() | suc( Nat )

In this example, Peano is the name of the module, Nat is a sort, zero and suc
are constructors. More generally, a module may import another module, such
as Peano, or any other predefined one like String or int. Given a signature, a
well formed and well typed term can be built using the backquote (‘) construct:
‘zero(), ‘suc(zero()) are correct, as opposed to ‘suc(zero(),zero()) or
‘suc(3) which are respectively not well-formed and not well-typed.

Due to the fact that Tom is built on top of Java, a term can be used in any
Java expression such as System.out.print("t = " + ‘suc(suc(zero()))).
To ensure that the type of a term can be statically checked by the underlying
Java compiler, the implementation of ‘suc(suc(zero())) should reflect the
type defined by the signature. To solve this problem, we followed a different ap-
proach from other classical implementations such as ASF+SDF, OCaml, ELAN,
Maude, ML, or Stratego.

Usually, the compiler checks that all term manipulations result in correctly
typed terms, while at runtime level a generic untyped term implementation is
used. In our case, we use a generator [13] that compiles the algebraic signature
into a typed term structure that can be directly used by a Java programmer.
The need for a typed term structure comes also from the fact that pure Java

code, not handled by the Tom compiler, could create wrongly shaped terms. The
generated structures are efficient, and provide types at the implementation level.
As a consequence, for each sort a Java class with the same name is generated:
Nat t = ‘suc(suc(zero())) defines a variable t of sort Nat. By generating a
statically typed implementation we provide a smooth and natural integration of
the notions of signature and term into Java.

Pattern matching and rewriting. Implementing term rewriting may be con-
sidered a simple task. To know if a rewrite rule l→ r can be applied for a ground
term t, it is sufficient to have a pattern matching algorithm that computes, when
it is possible, a substitution σ such that σl = t, and fails otherwise. The appli-
cation of the rule consists in replacing t by σr. However, real cases are more
complicated. The rules may be applied not only on top, but also to subterms;
they may have conditions; the patterns may contain symbols that belong to an
equational theory (such as associativity and commutativity for example) and the
application order of several rules may be prioritized. Besides, one may be inter-
ested in not only getting a single result, but also getting the set of all possible
reductions of a given term t. The combinations of all these variants are difficult
to tackle with. In practice, each implementation considers only a subset of them.

A main objective of Tom is to be as generic as possible. Therefore, we pro-
vide a key primitive on top of Java that can be used to handle most of the
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situations described above: the %match construct. Its semantics is close to the
match that exists in functional programming languages, but in an imperative
context. A %match is parameterized by a list of subjects (i.e. expressions evalu-
ated to ground terms) and contains a list of rules. The left-hand side of the rules
are patterns built upon constructors and fresh variables, without any restriction
of linearity. The right-hand side is not a term, but a Java statement that is
executed when the pattern matches the subject. But thanks to the backquote
construct (‘) a term can be easily built and returned. Similar to the standard
switch/case construct, patterns are evaluated from top to bottom. In contrast
to the functional match, several actions (i.e. right-hand side) may be fired for a
given subject as long as no return or break is executed. To implement a sim-
ple reduction step, for each rule, we just have to encode the left-hand side by
a pattern and consider a Java statement that returns the right-hand side. To
encode a rewrite system, the notion of function that already exists in Java is
fundamental. For example, the addition and the comparison of Peano integers
may be encoded as follows:

public Nat plus(Nat t1, Nat t2) {
%match(t1,t2) {
x,zero() -> { return ‘x; }
x,suc(y) -> {

return ‘suc(plus(x,y));
}

}
}

boolean greaterThan(Nat t1, Nat t2) {
%match(t1, t2) {
x,x -> { return false; }
suc(_),zero() -> { return true; }
zero(),suc(_) -> { return false; }
suc(x),suc(y) -> {

return ‘greaterThan(x,y); }
}}

The reader should note that anonymous variables (_) are allowed and that vari-
ables such as x or y do not need to be declared: they are local to each left-hand
side and their type is automatically inferred.

List matching. In addition to free constructors, list operators can be also
declared. They are a variant of associative operators with neutral element:
module Peano
Nat = zero() | suc( Nat )
NatList = conc( Nat* )

The notation Nat* means that conc is a variadic operator where each subterm
is of sort Nat. It can be seen as a concatenation operator over Nat lists: ‘conc()
denotes the empty list while ‘conc(zero(),suc(zero())) corresponds to the
list that contains zero() and suc(zero()). List operators can be used in the
left-hand side of a rule in order to perform list matching:
Collection bag = new HashSet();
%match(list) {

conc(_*,suc(x),_*) -> { bag.add(‘x); }
}
System.out.println("numbers: " + bag.toString());

In this example, one can remark the use of list variables, annotated by a ‘*’,
which intuitively corresponds to the Kleene star: such a variable is instantiated
by a (possibly empty) list. Note that an action is fired for each pattern and



40 E. Balland et al.

substitution that matches the subject. Since list matching is not unitary, the
action bag.add(‘x) is evaluated for each element of list that matches against
suc(x). When applied to a list of Peano integers, this code stores each natural
whose successor is in the list into the set represented by bag. This non-functional
approach is very useful to encode non-deterministic computations such as the
exploration of a search space. Combining list operators and conditions allows for
the definition of complex algorithms in a concise manner, as illustrated by the
following sorting algorithm:
public NatList sort(NatList list) {

%match(list) {
conc(X1*,x,X2*,y,X3*) -> {

if(greaterThan(x,y)) { return ‘sort(conc(X1*,y,X2*,x,X3*)); } }
_ -> { return list; }

}
}

Given a partially sorted list, the sort function looks for two elements x and y
such that x is greater than y. If two such elements exist, they are swapped and
the sort function is recursively applied. When the list is sorted this condition
cannot be satisfied and the next pattern is tried: the sorted list is returned. This
example also shows how a conditional rule can be naturally encoded using the
if construct provided by Java.

Normal forms. When manipulating non-free algebras, it is convenient to work
with terms in normal form. These normal forms are defined by a confluent and
terminating rewrite system that is systematically applied to each term. This
was the purpose of unnamed rules in ELAN for example. Instead of relying on
normalization functions that have to be explicitly called by the programmer,
Tom proposes to integrate the computation of normal forms into the definition
of the data structure. This approach is very close to the recently introduced
OCaml private types [11]. Normal forms are specified using the notion of hook
which defines construction functions in the term signature. For instance, suppose
that we want to work on Z/3Z. Then, we have to systematically apply the rule
suc(suc(suc(x))) → x when creating new terms. This is specified by a hook
attached to the suc operator.
module Peano
Nat = zero() | suc( Nat )
suc:make(t) {

%match(t) { suc(suc(x)) -> { return ‘x; } }
}

Each time a suc is built, make(t) is called with t instantiated by the subterm
of the considered suc. This is why the rewrite rule above only rewrites two suc.
A default allocator is called when no rule can be applied

3 Controlling Rewriting

When using rewriting as a programming or modeling paradigm, it is common to
consider rewrite systems that are non-confluent or non-terminating. To be able
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to use them, it is necessary to exercise some control over the application of the
rules. In Tom, a solution would be to use Java to express the control needed.
While this solution provides a huge flexibility, its lack of abstraction renders
difficult the reasoning about such transformations.

Rewriting based languages provide more abstract ways to express control
of rule applications, by using reflexivity and the meta-level for Maude, or
the notion of rewriting strategies for ELAN, Stratego [16], or ASF+SDF [4].
Strategies such as bottom-up, top-down or leftmost-innermost are higher-order
features that describe how rewrite rules should be applied. We have devel-
oped a flexible and expressive strategy language inspired by ELAN, Stratego,
and JJTraveler [17] where high-level strategies are defined by combining low-
level primitives. For example, the top-down strategy is recursively defined by
TopDown(s)

�
= Sequence(s,All(TopDown(s))).

Elementary strategies. An elementary strategy corresponds to a minimal
transformation. It could be Identity (does nothing), Fail (always fails), or a set
of rewrite rules (performs an elementary rewrite step only at the root position).
In our system, strategies are type-preserving and have a default behavior (intro-
duced by the keyword extends) that can be either Identity or Fail:
%strategy R() extends Fail() {

visit Nat {
zero() -> { return ‘suc(zero()); }
suc(suc(x)) -> { return ‘x; }

}
}

When a strategy is applied to a term t, as in a %match, a rule is fired if a
pattern matches. Otherwise, the default strategy is applied. For example, ap-
plying the strategy R() to the term suc(suc(zero())) will produce the term
zero() thanks to the second rule. The application to suc(suc(suc(zero())))
fails since no pattern matches at root position.

Recursive and parameterized strategies. More control is obtained by com-
bining elementary strategies with basic combinators such as Sequence, Choice,
All, One as presented in [2,16]. By denoting s[t] the application of the strat-
egy s to the term t, the basic combinators are defined as follows:

Sequence(s1,s2)[t] → s2[t’] if s1[t] → t’
failure if s1[t] fails

Choice(s1,s2)[t] → t’ if s1[t] → t’
s2[t’] if s1[t] fails

All(s)[f(t1,...,tn)] → f(t1’,...,tn’) if s[t1] → t1’,. . . , s[tn] → tn’
failure if there exists i such that s[ti] fails

One(s)[f(t1,...,tn)] → f(t1,...,ti’,...,tn) if s[ti] → ti’
failure if for all i, s[ti] fails

An example of composed strategy is Try(s)
�
= ‘Choice(s,Identity()),

which applies s if it can, and performs the Identity otherwise. To define strate-
gies such as repeat, bottom-up, top-down, etc. recursive definitions are needed.
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For example, to repeat the application of a strategy s until it fails, we consider
the strategy Repeat(s)

�
= Choice(Sequence(s,Repeat(s)), Identity()). In

Tom, we use the recursion operator μ (comparable to rec in OCaml) to have
stand-alone definitions: μx.Choice(Sequence(s,x),Identity()).

The All and One combinators are used to define tree traversals. For example,
we have TopDown(s)

�
= μx.Sequence(s,All(x)): the strategy s is first applied

on top of the considered term, then the strategy TopDown(s) is recursively called
on all immediate subterms of the term.

Exploration strategies. Strategy expressions can have any kind of parame-
ters. It is common to have a Java Collection as parameter to collect some
information in a tree. For example, let us consider the following strategy which
collects the direct subterms of an f . This program creates a hash-set, and a
strategy applied to f(f(a())) collects all the subterms which are under an f:
i.e. {a(), f(a())}.
%strategy Collect(c:Collection) extends Identity() {

visit T {
f(x) -> { c.add(‘x); }

}
}
Collection bag = new HashSet();
‘TopDown(Collect(bag)).apply( ‘f(f(a())) );

4 Meta-programming

The strategy language presented in Section 3 is very expressive and powerful to
control how a set of rules should be applied. This is very convenient to collect
information or traverse a tree for example. But, there is no real support to
perform non-deterministic computations as in the exploration of a search space,
which is essential when implementing a model checker or a prover for instance.
For this purpose, we have added two new extensions to the strategy language.

Reifying t|ω. Given a term t, suppose that we want to compute the set of all
its possible successors wrt. a rewrite rule l → r. We have to find all possible
redexes, and for each of them to compute all the substitutions that solve the
matching problem. In other words, we want to compute {t[σ1r]ω1 , t[σ2r]ω1 , . . . ,
t[σpr]ωn , . . . , t[σqr]ωn}, where ωi denotes a redex position, and σj is a substitu-
tion such that σj l = t|ωi

.
Solving this problem involves manipulating the notion of position in a term,

and some associated operations: getting the subterm at position ω, and replacing
this subterm. To the best of our knowledge, there is no rewriting based language
where positions, which are internal to the implementation, can be explicitly
manipulated. We introduce a new operation, getPosition(), which raises the
notion of position at the object level, providing this global information to the
level of strategies. To compute the set of all successors of t for example1, we
1 Many other operations and strategies may be defined.
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consider the top-down application of a strategy parameterized by the term t itself
and a collection bag. For each redex position ω (i.e. when a pattern matches), we
store t[σr]ω in bag, using getPosition() to obtain ω and replace to perform
the replacement:
%strategy Collect(t:T, bag:Collection) extends Identity() {

visit T {
a() -> { bag.add(replace(t, getPosition(), ‘b())); }
f(x) -> { bag.add(replace(t, getPosition(), ‘x)); }
g(x) -> { bag.add(replace(t, getPosition(), ‘c())); }

}
}
T t = ‘f(g(a()));
‘TopDown(Collect(t,bag)).apply(t);

The resulting bag contains f(g(b())), g(a()), and f(c()). This reification
of the position notion to the object level is new in the domain of rewriting
based languages, and it adds expressiveness while keeping programs close to
their specification.

Rewriting a strategy. Strategy expressions are terms, and thus can them-
selves be subject to pattern matching and reduction by strategies. This permits
dynamical adaptation of a strategy depending on the environment.

For example, suppose that we have two strategies, s1 and s2 which can com-
mute. If computing s2;s1 is more efficient than computing s1;s2, we can define
a rule to reorder the sequences of s1 and s2:
%strategy Reorder() extends Identity() {

visit T {
Sequence(s1(),s2()) -> { return ‘Sequence(s2(),s1()); }

}
}

This strategy can be further applied top-down to any strategy s with:
Strategy optimized s = ‘TopDown(Reorder()).apply(s).

5 Implementation

Since its first version in 2001, Tom itself has been written using Tom. The system
is composed of a compiler and a library which defines the strategy language
and offers support for predefined data-types such as integers, floats, strings,
collections, and many other Java data-structures. The compiler is organized, in
a pure functional style, as a pipeline of program transformations (type inference,
simplification, compilation, optimization, generation). Each phase transforms a
Java+Tom abstract syntax tree (AST) using rewrite rules and strategies. At
the end a pure Java AST is obtained. The system is composed of 1000 %match
constructs, and 200 user strategy definitions, totalizing more than 40000 lines
of code. The complete environment has been integrated into Eclipse2 providing
2 http://www.eclipse.org/
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a simple and efficient user interface to develop, compile, and debug rule based
applications. Each component of the Tom environment is highly modular and
has been designed with flexibility and reusability in mind, without introducing
any performance overhead. Due to the lack of space, we mention here only a few
key ingredients.
Data representation. The generator of data-structures is integrated in Tom but
can be also used independently. Given a signature, it generates a set of Java

classes that provide static typing. A subtle hash-consing technique is used to offer
maximal sharing [14]: there cannot be two identical terms in memory. Therefore,
the equality tests are performed in constant time, which is very efficient in many
cases including when non left-linear rewrite rules are considered. In addition
to the generation of lightweight data-structures, specialized hash-functions are
generated for each constructor of the signature, making the generated imple-
mentation often more efficient than a hand-coded term data-structure.
Pattern matching. Thanks to the formal anchor approach, Tom is not restricted
to a fixed term data-structure. We have designed a compilation algorithm where
the data-structure is a parameter of the pattern matching algorithm. In par-
ticular, Tom can be used to match and rewrite XML documents. Moreover,
the underlying host language is also a parameter, making possible the compila-
tion (including list-matching) into different target languages such as C, Java,
OCaml, and Python. This approach has been formally studied in [10]. Besides,
for each compilation of a set of patterns, Tom provides a Coq proof that the
generated code is correct wrt. the semantics of pattern matching.
Strategies. Most of the strategy library is written in Tom, making its extension
easy. Only a few of low-level elementary strategies (Sequence, Choice, All, One,
etc.) are implemented in Java. However, the considered object design-patterns
for these elementary strategies facilitate their extension also. To add a new prob-
abilistic choice operator for example, less than 30 lines of code have to be written,
without any re-compilation of the system. This makes Tom an ideal platform to
experiment new paradigms. Once again, the methodology used to implement the
strategy library is not restricted to a given term representation, being possible
to switch to another one by properly applying the interface concept offered by
Java.

6 Applications

The Tom system is no longer a prototype. It has been used to implement many
large and complex applications, among them the compiler itself. It has also been
used in an industrial context to implement a query optimizer for Xquery, a plat-
form for transforming and analysing timed automata using XML manipulation,
etc. In this section we focus on some applications where the key characteristics
of Tom were particularly useful.

Proof assistant. lemuridae is a proof assistant for superdeduction [6] (a dynamic
extension of sequent calculus). Proof trees benefit from maximal memory sharing
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which allows for the handling of big proofs while tactics are naturally translated
into strategies. Besides, the expressiveness of Tom patterns makes the micro-
proofchecker only one hundred lines long and therefore enables a high degree of
confidence in the prover.

NSPK. Tom has been used to implement the verification of the Needham-
Schroeder public key protocol by model checking. Several strategies have been
experimented. The resulting implementation can be compared favorably with
state of the art rule based implementation such as Maude or Murϕ.

Rho-calculus. An interpreter for the rho-calculus [7] with explicit substitutions
was developed using Tom. It is surprisingly short and close to the operational
semantics of the calculus taking advantage of all the capabilities of Tom. The
calculus itself is expressed using rewrite rules and parameterized strategies, while
the interactive features and user interface operations take advantage of the un-
derlying Java language.

Calculus of structures. Tom is used to implement an automatic prover for the
system BV in the calculus of structures [13]. Normal forms are used to implement
the several associative-commutative operators with neutral elements while first-
order positions allow to manage the high level of non determinism introduced
by deep inference.

On several classical benchmarks Tom is competitive with state of the art im-
plementations like ASF+SDF, ELAN, or Maude

3. In the following, Fibonacci
computes 500 times the 18th Fibonacci number using a Peano representation.
Sieve computes prime numbers up to 2000 using list matching to eliminate non-
prime numbers: (c1∗, x, c2∗, y, c3∗) → (c1∗, x, c2∗, c3∗) if x divides y4. Evalsym,
Evalexp, and Evaltree are three benchmarks based on the normalization of the
expression 222 mod 17 using different reduction strategies. These three bench-
marks were first presented in [5]. All these examples are available on the Tom

source repository5. The measurements were done on a MacBook Pro 2.33 GHz,
using Java 1.5.0 and gcc 4.0.

Fibonacci Sieve Evalsym Evalexp Evaltree

ASF+ SDF 0.4 s 24.1 s 1.7 s 2.0 s 1.6 s

ELAN 1.1 s − 5.3 s 11.8 s 10.1 s

Maude 2.3 s 17.7 s 8.8 s 15.4 s 21.3 s

Tom C 0.6 s 0.2 s 1.9 s 2.0 s 2.2 s

Tom Java 1.9 s 2.2 s 7.8 s 8.4 s 8.2 s

3 Note that Maude is an interpreter. The experimental results are extraordinarily
good compared to the compiled and highly optimized low-level C implementations.

4 On this example, the performance of ASF+SDF may be explained by the lack of
support for builtin integers.

5 http://gforge.inria.fr/projects/tom/
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7 Related Work

The creation of Tom was motivated by the difficulty in integrating or reusing a
term rewriting based language in an industrial context. The initial idea of pig-
gybacking rewriting on a generalist host language was inspired by Lex and Yacc
and generalized in the framework of formal islands. Tom is the result of a long
term effort, on one hand integrating innovative ideas and concepts, and on the
other hand combining and incorporating key notions and techniques developed
in well reputed research teams. Regarding the data-structures, the implementa-
tion of the generator has been done in strong cooperation with the authors of
ApiGen [15] and followed our experience with the ATerm [14] library used by
ASF+SDF. The originality of our solution is to provide typed constructs result-
ing in a faster and safer implementation. Moreover, we introduce the notion of
hook which is strongly related to OCaml private types. Concerning matching the-
ories, Tom is similar to ASF+SDF by providing list-matching, that corresponds
to associative matching with neutral element. Contrary to Maude and ELAN,
the restriction to list-matching instead of more complex theories like associative-
commutative makes the implementation simpler and powerful enough in many
cases. The design of the strategy language has been inspired by ELAN, Strat-
ego, and JJTraveler. Compared to ELAN, Tom does not support implicit non-
deterministic strategies, implemented using back-tracking. But due to reification
of t|ω, explicit non-deterministic computations are practical. ASF+SDF does not
have a strategy language but provides traversal functions that can be used to
control how a set of rule should be applied. By raising the notion of strategy
to the object level, Tom offers meta-programming capabilities that may remind
the meta-level of Maude. With regard to strategy languages, Stratego is cer-
tainly the language to which Tom is the most close, the main differences being
strategies as terms and explicit non-deterministic computations.

8 Conclusion

In this paper we introduced the system Tom, which brings rewriting techniques
to the world of mainstream programming languages. In addition to this original
result, the contributions of Tom include: the notion of formal island ; the cer-
tification of pattern matching; a support for private types in Java; an efficient
implementation of typed and maximally shared terms; user definable recursive
strategies (in Java) using the μ operator; strategies considered as terms; reifi-
cation of t|ω that makes non-deterministic computations explicit.

We are currently working on two extensions. One is the formalization and
the integration of the notion of anti-patterns [9], which enables the expression
of negative constraints inside patterns. The second one concerns the integration
of termgraph rewriting capabilities into the language and the extension of the
strategy library.
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Université de Rennes 1 and INRIA and CNRS
IRISA, Campus de Beaulieu, F-35042 Rennes, France

{boichut,genet,jensen,leroux}@irisa.fr

Abstract. This paper shows how to construct static analyzers using
tree automata and rewriting techniques. Starting from a term rewriting
system representing the operational semantics of the target program-
ming language and given a program to analyze, we automatically con-
struct an over-approximation of the set of reachable terms, i.e. of the
program states that can be reached. The approach enables fast proto-
typing of static analyzers because modifying the analysis simply amounts
to changing the set of rewrite rules defining the approximation. A salient
feature of this approach is that the approximation is correct by con-
struction and hence does not require an explicit correctness proof. To
illustrate the framework proposed here on a realistic programming lan-
guage we instantiate it with the Java Virtual Machine semantics and
perform class analysis on Java bytecode programs.

1 Introduction

The aim of this paper is to show how to combine rewriting theory with principles
from abstract interpretation in order to obtain a fast and reliable methodology
for implementing static analyzers for programs. Rewriting theory and in partic-
ular reachability analysis based on tree automata has proved to be a powerful
technique for analyzing particular classes of software such as cryptographic pro-
tocols [11,8,12]. In this paper we set up a framework that allows to apply those
techniques to a general programming language. Our framework consists of three
parts. First, we define an encoding of the operational semantics of the language
as a term rewriting system (TRS for short). Second, we give a translation scheme
for transforming programs into rewrite rules. Finally, an over-approximation of
the set of reachable program states represented by a tree automaton is computed
using the tree automata completion algorithm [8]. In this paper, we instantiate
this framework on a real test case, namely Java. We encode the Java Virtual
Machine (JVM for short) operational semantics and Java bytecode programs
into TRS and construct over-approximations of JVM states.

With regards to rewriting, the contribution of this paper is dual. First, we
propose an encoding of a significant part of Java into left-linear, unconditionnal
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TRS. For rewriting, the second contribution is to have scaled up the theoretical
construction of tree automata completion to the verification of Java bytecode
programs. With respect to static analysis, the contribution of this paper is to
show that regular approximations can be used as a foundational mechanism
for ensuring, by construction, safety of static analyzers. This paper shows that
the approach can already be used to achieve standard class analysis on Java
bytecode programs. Moreover, using approximation rules instead of abstract
domains makes the analysis easier to fine-tune and to prove correct. This is
of great interest, when a standard analysis is too coarse, since our technique
permits to adapt the analysis to the property to prove and preserve safety.

The paper is organized as follows. Section 2 introduces the formal background
of the rewriting theory. Section 3 shows how to over-approximate the set of reach-
able terms using tree automata. Section 4 presents a term rewriting model of the
Java semantics. Section 5 presents, by the means of some classical examples, how
rewriting approximations can be used for a class analysis. Section 6 compares
our contribution with related works. Section 7 concludes.

2 Formal Background

Comprehensive surveys can be found in [6,1] for term rewriting systems, and
in [5,14] for tree automata and tree language theory.

Let F be a finite set of symbols, each associated with an arity function, and let
X be a countable set of variables. T (F ,X ) denotes the set of terms, and T (F)
denotes the set of ground terms (terms without variables). The set of variables
of a term t is denoted by Var(t). A substitution is a function σ from X into
T (F ,X ), which can be extended uniquely to an endomorphism of T (F ,X ). A
position p for a term t is a word over N. The empty sequence ε denotes the
top-most position. The set Pos(t) of positions of a term t is inductively defined
by:

– Pos(t) = {ε} if t ∈ X
– Pos(f(t1, . . . , tn)) = {ε} ∪ {i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)}

If p ∈ Pos(t), then t|p denotes the subterm of t at position p and t[s]p denotes
the term obtained by replacement of the subterm t|p at position p by the term s.
A term rewriting system R is a set of rewrite rules l → r, where l, r ∈ T (F ,X ),
l �∈ X , and Var(l) ⊇ Var(r). A rewrite rule l → r is left-linear if each variable
of l (resp. r) occurs only once in l. A TRS R is left-linear if every rewrite rule
l→ r of R is left-linear). The TRS R induces a rewriting relation →R on terms
whose reflexive transitive closure is denoted by →�

R. The set of R-descendants
of a set of ground terms E is R∗(E) = {t ∈ T (F) | ∃s ∈ E s.t. s→�

R t}.
The verification technique we propose in this paper is based on the compu-

tation of R∗(E). Note that R∗(E) is possibly infinite: R may not terminate
and/or E may be infinite. The set R∗(E) is generally not computable [14]. How-
ever, it is possible to over-approximate it [8,18] using tree automata, i.e. a finite
representation of infinite (regular) sets of terms. We next define tree automata.
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Let Q be a finite set of symbols, with arity 0, called states such that Q∩F = ∅.
T (F ∪Q) is called the set of configurations.

Definition 1 (Transition and normalized transition). A transition is a
rewrite rule c → q, where c is a configuration i.e. c ∈ T (F ∪Q) and q ∈ Q.
A normalized transition is a transition c → q where c = f(q1, . . . , qn), f ∈ F
whose arity is n, and q1, . . . , qn ∈ Q.

Definition 2 (Bottom-up non-deterministic finite tree automaton). A
bottom-up non-deterministic finite tree automaton (tree automaton for short) is
a quadruple A = 〈F ,Q,Qf , Δ〉, where Qf ⊆ Q and Δ is a set of normalized
transitions.

The rewriting relation on T (F ∪Q) induced by the transitions of A (the set Δ)
is denoted by →Δ. When Δ is clear from the context, →Δ will also be denoted
by →A.

Definition 3 (Recognized language). The tree language recognized by A in
a state q is L(A, q) = {t ∈ T (F) | t →�

A q}. The language recognized by A
is L(A) =

⋃
q∈Qf

L(A, q). A tree language is regular if and only if it can be
recognized by a tree automaton.

3 Approximations of Reachable Terms

Given a tree automaton A and a TRS R, the tree automata completion algo-
rithm, proposed in [10,8], computes a tree automaton Ak

R such that L(Ak
R) =

R∗(L(A)) when it is possible (for the classes of TRSs where an exact computa-
tion is possible, see [8]) and such that L(Ak

R) ⊇ R∗(L(A)) otherwise.
The tree automata completion works as follows. From A = A0

R completion
builds a sequenceA0

R.A1
R . . .Ak

R of automata such that if s ∈ L(Ai
R) and s→R t

then t ∈ L(Ai+1
R ). If we find a fixpoint automaton Ak

R such that R∗(L(Ak
R)) =

L(Ak
R), then we have L(Ak

R) = R∗(L(A0
R)) (or L(Ak

R) ⊇ R∗(L(A)) if R is not
in one class of [8]). To build Ai+1

R from Ai
R, we achieve a completion step which

consists of finding critical pairs between →R and →Ai
R

. To define the notion of
critical pair, we extend the definition of substitutions to terms of T (F ∪Q). For
a substitution σ : X �→ Q and a rule l→ r ∈ R, a critical pair is an instance lσ
of l such that there exists q ∈ Q satisfying lσ →∗

Ai
R
q and lσ →R rσ. Note that

since R, Ai
R and the set Q of states of Ai

R are finite, there is only a finite number
of critical pairs. For every critical pair detected between R and Ai

R such that
rσ �→∗

Ai
R
q, the tree automaton Ai+1

R is constructed by adding a new transition

rσ → q to Ai
R such that Ai+1

R recognizes rσ in q, i.e. rσ →Ai+1
R

q.

∗

lσ

Ai
R

R
rσ

q

∗
Ai+1

R
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However, the transition rσ → q is not necessarily a normalized transition of the
form f(q1, . . . , qn) → q and so it has to be normalized first. Since normalization
consists in associating state symbols to subterms of the left-hand side of the new
transition, it always succeed. Note that, when using new states to normalize
the transitions, completion is as precise as possible. However, without approx-
imation, completion is likely not to terminate (because of general undecidabil-
ity results [14]). To enforce termination, and produce an over-approximation,
the completion algorithm is parametrized by a set N of approximation rules.
When the set N is used during completion to normalize transitions, the ob-
tained tree automata are denoted by A1

N,R, . . . ,Ak
N,R. Each such rule describes

a context in which a list of rules can be used to normalize a term. For all
s, l1, . . . , ln ∈ T (F ∪Q,X ) and for all x, x1, . . . , xn ∈ Q ∪ X , the general form
for an approximation rule is:

[s→ x]→ [l1 → x1, . . . , ln → xn].

The expression [s → x] is a pattern to be matched with the new transitions
t→ q′ obtained by completion. The expression [l1 → x1, . . . , ln → xn] is a set of
rules used to normalize t. To normalize a transition of the form t→ q′, we match
s with t and x with q′, obtain a substitution σ from the matching and then we
normalize t with the rewrite system {l1σ → x1σ, . . . , lnσ → xnσ}. Furthermore,
if ∀i = 1 . . . n : xi ∈ Q or xi ∈ Var(li) ∪ Var(s) ∪ {x} then since σ : X �→ Q,
x1σ, . . . , xnσ are necessarily states. If a transition cannot be fully normalized
using approximation rules N , normalization is finished using some new states,
see Example 1.

The main property of the tree automata completion algorithm is that, what-
ever the state labels used to normalize the new transitions, if completion termi-
nates then it produces an over-approximation of reachable terms [8].

Theorem 1 ([8]). Let R be a left-linear TRS, A be a tree automaton and N
be a set of approximation rules. If completion terminates on Ak

N,R then

L(Ak
N,R) ⊇ R∗(L(A))

Here is a simple example illustrating completion and the use of approximation
rules when the language R∗(E) is not regular.

Example 1. Let R = {g(x, y)→ g(f(x), f(y))} and let A be the tree automaton
such that Qf = {qf} and Δ = {a→ qa, g(qa, qa)→ qf}. Hence L(A) = {g(a, a)}
and R∗(L(A)) = {g(fn(a), fn(a)) | n ≥ 0}. Let N = [g(f(x), f(y)) → z] →
[f(x) → q1, f(y) → q1]. During the first completion step, we find a criti-
cal pair g(qa, qa) →R g(f(qa), f(qa)) and g(qa, qa) →∗

A qf . We thus have to

add the transition g(f(qa), f(qa)) → qf to A. To normalize this transition,
we match g(f(x), f(y)) with g(f(qa), f(qa)) and match z with qf and obtain
σ = {x �→ qa, y �→ qa, z �→ qf}. Applying σ to [f(x) → q1, f(y) → q1] gives
[f(qa) → q1, f(qa) → q1]. This last system is used to normalize the transition
g(f(qa), f(qa)) → qf into the set {g(q1, q1) → qf , f(qa) → q1} which is added
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to A to obtain A1
N,R. The completion process continues for another step and

ends on A2
N,R whose set of transition is {a → qa, g(qa, qa) → qf , g(q1, q1) →

qf , f(qa) → q1, f(q1) → q1}. We have L(Ak
N,R) = {g(fn(a), fm(a)) | n,m ≥ 0}

which is an over-approximation of R∗(L(A)).

The tree automata completion algorithm and the approximation mechanism
are implemented in the Timbuk [13] tool. On the previous example, once the
fixpoint automaton Ak

N,R has been computed, it is possible to check whether
some terms are reachable, i.e. recognized by Ak

N,R or not. This can be done using
tree automata intersections [8]. Another way to do that is to search instances
for a pattern t, where t ∈ T (F ,X ), in the tree automaton. Given t it is possible
to check if there exists a substitution σ : X �→ Q and a state q ∈ Q such that
tσ →∗

Ak
N,R

q. If such a solution exists then it proves that there exists a term

s ∈ T (F), a position p ∈ Pos(s) and a substitution σ′ : X �→ T (F) such that
s[tσ′]p ∈ L(Ak

N,R) ⊇ R∗(L(A)), i.e. that tσ′ occurs as a subterm in the language
recognized by L(Ak

N,R). On the other hand, if there is no solution then it proves
that no such term is in the over-approximation, hence it is not in R∗(L(A)), i.e.
it is not reachable.

In the patterns we use in this paper, ’?x’ denotes variables for which a value
is wanted and ’ ’ denotes anonymous variables for which no value is needed.
For instance, the pattern g(f( ), g( , )) has no solution on A2

N,R of example 1,
meaning that no term containing any ground instance of this pattern is reachable
by rewriting g(a, a).

4 Formalization of the Java Bytecode Semantics Using
Rewriting Rules

This section describes how to formalize the semantics of an object-oriented lan-
guage (here, Java bytecode) using rewriting rules. From a bytecode Java program
p, we have developed a prototype that automatically produces a TRS R model-
ing a significant part of the Java semantics (stacks, frames, objects, references,
methods, heaps, integers) as well as the semantics of p. For the moment, excep-
tions and threads are not taken into account but they can be elegantly encoded
using rewriting [16,7]. The formalization follows the structure of standard Java
semantics formalizations [2,9].

4.1 Formalization of Java Program States

A Java program state contains a current execution frame (also called activation
record), a frame stack, a heap, and a static heap. A frame gives information
about the method currently being executed: its name, current program counter,
operand stack and local variables. When a method is invoked the current frame
is stored in the frame stack and a new current frame is created. A heap is used to
store objects and arrays, i.e. all the information that is not local to the execution
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of a method. The static heap stores values of static fields, i.e. values that are
shared by all objects of a same class.

Let P be the infinite set of all the possible Java programs. Given p ∈ P ,
let C(p) be the corresponding finite set of class identifiers and Cr(p) be C(p) ∪
{array}. A value is either a primitive type or a reference pointing to an object
(or an array) in the heap. In our setting, we only consider integer and boolean
primitive types. Let PC(p) be the set of integers from 0 to the highest possible
program point in all the methods in p. Let M(p) be the set of method names
and Mid(p) be the finite set of pairs (m, c) where m ∈M(p), c ∈ C(p) and m is
a method defined by the class c. This last set is needed to distinguish between
methods having the same name but defined by different classes. For the sake of
simplicity, we do not distinguish between methods having the same name but a
different signature but this could easily be done.

Following standard Java semantics we define a frame to be a tuple f =
(pc,m, s, l) where pc ∈ PC(p), m ∈ Mid(p), s an operand stack, l a finite map
from indexes to values (local variables). An object from a class c is a map from
field identifiers to values. The heap is a map from references to objects and ar-
rays. The static heap is a map from static field names to values. A program state
is a tuple s = (f, fs, h, k) where f is a frame, fs is a stack of frames, h is a heap
and k a static heap.

4.2 A Program State as a Term

Let FC(p) = C(p) and FCr(p) = Cr(p) = C(p) ∪ {array} be sets of symbols.
We encode a reference as a term loc(c, a) where c ∈ Cr(P ) is the class of the
object being referenced and a is an integer. This is coherent with Java semantics
where it is always possible to know dynamically the class of an object corre-
sponding to a reference. We use Fprimitive = {succ : 1, pred : 1, zero : 0} for
primitive types (integers), Freference(p) = {loc : 2, succ : 1, zero : 0} ∪ FCr(p)
for references and Fvalue(p) = Fprimitive∪Freference(p) for values. For example,
loc(foo, succ(zero)) is a reference pointing to the object located at the index 1 in
the foo class heap. Let x be the higher program point of the program (p), then
FPC(p) = {pp0 : 0, pp1 : 0, ..., ppx : 0}. FM (p) is defined the same way as FC(p).
FMid

(p) = {name : 2}∪FM(p)∪FC(p). For example name(bar,A) stands for the
method bar defined by the class A. Let l(p) denote the maximum of local vari-
ables used by the methods of the program package p. We use Fstack(p) = {stack :
2, nilstack : 0} ∪ Fvalue(p) for stacks, FlocalV ars(p) = {locals : l(p), nillocal :
0} ∪ Fvalue(p) for local variables and Fframe(p) = {frame : 4} ∪ FPC(p) ∪
FMid

(p) ∪ Fstack(p) ∪ FlocalV ars(p) for frames. A possible frame thus would
be: frame(name(bar,A), pp4, stack(succ(zero), nilstack), locals(loc(bar, zero),
nillocal)) where the program counter points to the 4th instruction of the method
bar defined by the class A. The current operand stack has the integer 1 on the
top. The first local variable is some reference and the other is not initialized.

The alphabet Fobjects(p) contains the same symbols as FC(p), where the arity
of each symbol is the corresponding number of non-static fields. As an example,
objectA(zero) is an object from the class A with one field whose value is zero.
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Let nc be the number of classes. We chose to divide the heap into nc class heaps
plus one for the arrays. In a reference loc(c, a), a is the index of the object in the
list representing the heap of class c. An array is encoded using a list and indexes
in a similar way. We use Fheap(p) = {heaps : (nc + 1), heap : 2} ∪ Fstack(p) ∪
Fobjects(p) for heaps, and Fstate(p) = {state : 4} ∪ Fframe(p) ∪ Fheap(p) for
states.

4.3 Java Bytecode Semantics

Figure 1 presents some rules of the semantics operating at the frame level. For
a given instruction, if a frame matches the top expression then it is transformed
into the lower expression. Considering the frame (pc,m, s, l), pc denotes the
current program point, m the current method identifier, s the current stack and l
the current array of local variables. The operator ’::’ models stack concatenation.
The storei instruction is used to store the value at the top of the current stack in
the ith register, where x→i l denotes the new resulting array of local variables.

(pop)
(m, pc, x :: s, l)

(m,pc + 1, s, l)
(storei)

(m,pc, x :: s, l)

(m, pc + 1, s, x →i l)

Fig. 1. Example of bytecodes operating at the frame level

Figure 2 presents a rule of the semantics operating at the state level. For
a state ((m, pc, s, l), fs, h, k), the symbols pc, m, s and l denote the current
frame components, fs the current stack of frames, h the heap and k the static
heap. The instruction invokeV irtualname implements dynamic method invoca-
tion. The method to be invoked is determined from its name and the class of
the reference at the top of the stack. The internal function class(ref, h, k) is
used to get the reference’s class c and lookup(name, c) searches the class hi-
erarchy in a bottom-up fashion for the the method m′ corresponding to this
name and this class. There are internal functions to manage the parameters of
the method (pushed on the stack before invoking): storeparams(ref :: s,m′) to
build an array of local variables from values on the top of the operand stack and
popparams(ref :: s,m′) to remove from the current operand stack the parame-
ters used by m′. With those tools, it is possible to build a new frame pointing at
the first program point of m′ and to push the current frame on the frame stack.
Some other examples can be found in [3].

(invokeV irtualname)
((m,pc, ref :: s, l), fs, h, k), c = class(ref, h, k), m′ = lookup(name, c)

((m′, 0, [], storeparams(ref :: s, m′)), (m,pc + 1, popparams(ref :: s, m′), l) :: fs, h, k)

Fig. 2. Example of bytecodes operating at the state level
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4.4 Java Bytecode Semantics Using Rewriting Rules

In this section, we encode the operational semantics into rewriting rules in a way
that makes the resulting system amenable to approximation by the techniques
described in this paper. The first constraint is that the term rewriting system
has to be left-linear (see Theorem 1). The second constraint, is that intermediate
steps modeling internal operations of the JVM (such as low level rewriting for
evaluating arithmetic operations +, ∗, . . .), should be easy to filter out. To this
end, we introduce a notion of intermediate frames (named xframe) encompass-
ing all the internal computations performed by the JVM, which are not part of
operational semantic rules. We can express the Java Bytecode Semantics of a
Java bytecode program p by means of rewriting rules (see [3] details). We give
here the encodings of pop and invokeV irtual instructions.

In the following, symbols m, c, pc, s, l, fs, h, k, x, y, a, b, adr, l0, l1, l2,
size, h, h0, h1, ha are variables. For a given program point pc in a given method
m, we build an xframe term very similar to the original frame term but with
the current instruction explicitly stated. The xframes are used to compute
intermediate steps. If an instruction requires several internal rewriting steps,
we will only rewrite the corresponding xframe term until the execution of the
instruction ends. Assume that, in program p, the instruction at program point
pp2 of method foo of class A is pop. In figure 3, Rule 1 builds a xframe term by
explicitly adding the current instruction to the frame term. Rule 2 describes the
semantics of pop. Rule 3 specifies the control flow by defining the next program
point.

1 frame(name(foo,A), pp2, s, l) → xframe(pop,name(foo, A), pp2, s, l)

2 xframe(pop,m, pc, stack(x, s), l) → frame(m,next(pc), s, l)

3 next(pp2) → pp3

Fig. 3. An example pop instruction by rewriting rules, for program p

Now, assume that, in program p, the instruction at program point pp2 of
method foo of class A is invokeV irtual. This instruction requires to compile
some information about methods and the class hierarchy into the rules. Basically,
we need to know what is the precise method to invoke, given a class identifier
and a method name. In p, assume that A and B are two classes such that B
extends A. Let set be a method implemented in the class A (and thus available
from B) with one parameter and reset a method implemented in the class B
(and thus unavailable from A) with no parameter. Figure 4 presents the resulting
rules for this simple example. To complete the modeling of the semantics and
the program by rewriting rules we need stubs for native libraries used by the
program. At present, we have developed stubs for some of the methods from the
javaioInputStream class. We model interactions of a Java program state with
its environment using a term of the form IO(s, i, o) where s is the state, i is the
input stream and o the output stream.
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1 frame(name(foo,A), pp2, s, l) → xframe(invokeV irtual(set),
name(foo, A), pp2, s, l)

2 state(xframe(invokeV irtual(set),
m, pc, stack(loc(A,adr),
stack(x, s)), l), fs, h, k)

→ state(frame(name(set,A), pp0, s,
locals(loc(A, adr), x, nillocal)),
stack(storedframe(m,pc, s, l), fs), h, k)

3 state(xframe(invokeV irtual(set),
m, pc, stack(loc(B, adr),
stack(x, s)), l), fs, h, k)

→ state(frame(name(set,A), pp0, s,
locals(loc(B, adr), x, nillocal)),
stack(storedframe(m,pc, s, l), fs), h, k)

4 state(xframe(invokeV irtual(reset),
m, pc, stack(loc(B, adr), s), l), fs, h, k)

→ state(frame(name(reset,B), pp0, s,
locals(loc(B, adr), nillocal, nillocal)),
stack(storedframe(m,pc, s, l), fs), h, k)

5 next(pp2) → pp3

Fig. 4. invokeV irtualset instruction by rewriting rules

5 Class Analysis as a Rewriting Theory

In most program analyzes, it is often necessary to know the control flow graph.
For Java, as for other object-oriented languages, the control flow depends on the
data flow. When a method is invoked, to know which one is executed, the class
of the involved object is needed. For instance, on the Java program of Figure 5,
x.foo() calls this.bar(). To know which version of the bar is called, it is
necessary to know the class of this and thus the class of x in x.foo() call.
The method actually invoked is determined dynamically during the program
run. Class analysis aims at statically determining the class of objects stored in
fields and local variables, and allows to build a more precise control flow graph
valid for all possible executions. Note that in this example, exceptions around
System.in.read() are required by the Java compiler. However, in this paper,
we do not take them into account in the control flow.

There are different standard class analyzes, from simple and fast to precise and
expensive. We consider k-CFA analysis [17]. In these analyzes, primitive types
are abstracted by the name of their type and references are abstracted by the
class of the objects they point to. In 0-CFA analysis, each method is analyzed
only once, without distinguishing between the different calls (and hence the
arguments passed) to this method. k-CFA analyzes different calls to the same
method separately, taking into account up to k frames on the top of the frame
stack.

Starting from a term rewriting system R modeling the semantics of a Java
program, and a tree automaton A recognizing a set of initial Java program
states, we aim at computing an automaton Ak

N,R over-approximatingR∗(L(A)).
We developed a prototype which produces R and A from a Java .class file.
From the Java source program of Figure 5, one can obtain the files Test.class,
A.class and B.class whose content is around 90 lines of bytecode. The TRS
R produced by compilation of those classes is composed of 275 rewrite rules.
The number of rewrite rules is linear w.r.t. the size of the bytecode files. The
analysis itself is performed using Timbuk [13]. Successively, this section details a
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0-CFA, a 1-CFA and an even more precise analysis obtained using the same TRS
R and automaton A, but using different sets of approximation rules. On this
program, the set of reachable program states is infinite (and thus approximations
are necessary) because the instruction x=System.in.read(), reading values in
the input stream, is embedded in an unbounded loop. As long as the value stored
in the variable x is different from 0, the computation continues. Moreover, since
we want to analyze this program for any possible stream of integers, in the
automaton A the input stream is unbounded.

class A{ o1= new A();
int y; o2= new B();
void foo(){this.bar();} try{
void bar(){y=1;} x=System.in.read();

} }
class B extends A{ catch (java.io.IOException e)

void bar(){y=2;} { x = 0;}
} while (x != 0){
class Test{ execute(o1);

public void execute(A x){ execute(o2);
x.foo(); try{

} x=System.in.read(); }
public void main(String[] argv){ catch (java.io.IOException e)

A o1; { x = 0;}}
B o2; }
int x; }

Fig. 5. Java Program Example

5.1 0-CFA Analysis

For a 0-CFA analysis, all integers are abstracted by their type, i.e. they are defined
by the following transitions inA: zero→ qint, succ(qint)→ qint and pred(qint) →
qint. The input stream is also specified by A as an infinite stack of integers:
nilstackin→ qin and stackin(qint, qin) → qin. Approximation rules for integers,
streams and references are defined by: [x → y] → [zero → qint, succ(qint) →
qint, pred(qint) → qint, nilstackin → qin, stackin(qint, qin) → qin, loc(A,α) →
qrefA, loc(B, β) → qrefB ] where x, y, α and β are variables. The pattern [x→ y]
matches any new transition to normalize and the rules loc(A, x) → qrefA and
loc(B, y) → qrefB merge all references to an object of the class A and an object
of the class B into the states qrefA and qrefB, respectively.

The approximation rules for frames and states are built according to the
principle illustrated in Figure 6. The frames representing two different calls to
the method m of the class c are merged independently of the current state of
the execution in which the method m is called. The set of approximation rules
N is completed by giving such an approximation rule for each method of each
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Fig. 6. Principle of approximation rules for a 0-CFA analysis

class. Using N , we can automatically obtain a fixpoint automaton A145
N,R over-

approximating the set of all reachable Java program states. The result of the 0-
CFA class analysis can be obtained, for each program location (a program point
in a method in a class), by asking for the possible classes for each object in the
stack or in the local variables. For instance, to obtain the set of possible classes
?c for the object passed as parameter to the method execute, i.e. the possible
classes for the second local variable at program point pp0 of execute, one can use
the following pattern: frame(name(execute,Test), pp0, , locals( , loc(?c, ), ...)).
The result obtained for this pattern is that there exist two possible values for
?c: qA and qB which are the states recognizing respectively the classes A and B.
This is consistent with 0-CFA which is not able to discriminate between the two
possible calls to the execute method.

5.2 1-CFA Analysis

For 1-CFA, we need to refine the set of approximation rules into N ′. In N ′ the
rules on integers, the input stream and references are similar to the ones used for
0-CFA. In N ′, approximation rules for states and frames are designed according
to the principle illustrated in Figure 7. Contrary to Figure 6, the frames for the
method m of the class c are merged if the corresponding method calls have been
done from the same program point (in the same method m′ of the class c′). For
example, there are two approximation rules for the method execute of the class
Test: one applying when execute is invoked from the program point pp18 of the
method main, and one applying when it is done from the program point pp21 of
this same method. Applying the same principle for all the methods, we obtain
a complete set of approximation rules N ′. Using N ′, completion terminates on
A140

N ′,R. The following patterns:

state(frame(name(execute, Test), pp0, , locals( , loc(?c, ), ...)), stack(storeframe( , pp18, ...), )...)

state(frame(name(execute, Test), pp0, , locals( , loc(?c, ), ...)), stack(storeframe( , pp21, ...), )...)
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gives the desired result: each pattern has only one solution for ?c: qA for the first
and qB for the second. Using a similar pattern to query the 0-CFA automaton
A145

N,R,gives qA and qB as solution for ?c for both program points.

5.3 Fine-Tuning the Precision of the Analysis

Assume that we want to show that, after the execution of the previous program,
field y has always a value 1 for objects of class A and 2 for objects of class B. This
cannot be done by 1-CFA nor by any k-CFA since, in those analyzes, integers are
abstracted by their type. One of the advantage of our technique is its ability to
easily make approximation more precise by removing some approximation rules.

The property we want to prove is related to values 1 and 2 so it is tempt-
ing to refine our approximation so as not to merge those values. However, only
distinguishing these two values is not enough for the analysis to succeed. Fur-
ther experimentation with the approximation shows that refining the approx-
imation of the integers by distinguishing between 0, 1, 2 and “any other in-
teger” is enough to prove the desired property. Formally, this is expressed by
the following transitions: 0 → q0, succ(q0) → q1, succ(q1) → q2, succ(q2) →
qint, succ(qint)→ qint. For specifying the negative integers, the following transi-
tions are used: pred(q0)→ qnegint and pred(qnegint)→ qnegint. The input stream
representation is also modified by the following transitions: nilstackin → qin,
stackin(qnegint, qin) → qin, stackin(qint, qin) → qin and stackin(qj , qin) → qin
with j = 0, . . . , 2.

No other approximation is needed to ensure termination of the completion. In
the fixpoint automaton A161

N,R, we are then able to show that, when the Java pro-
gram terminates, there are only two possible configurations of the heap. Either
the heap contains an object of class A and an object of class B whose fields are
both initialized to 0, or it contains an object of class A whose field has the value
1 and an object of class B whose field has the value 2. These verifications have
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been performed using a pattern matching with all the frames whose pp value is
the last control point of the program.

This result is not surprising. The first result is possible when there is zero
iterations of the loop (x is set to 0 before the instruction while (x != 0){...).
The second result is obtained for 1 or more iterations. Nevertheless, this kind of
result is impossible to obtain with the two previous analyzes presented in Section
5.1 and 5.2.

6 Related Work

Term rewriting systems have been used to define and prototype semantics for
a long time. However, this subject has recently reappeared for verification pur-
poses. In [7,16], rewriting is also used as operational semantics for Java. The ver-
ification done on the obtained rewriting system is closer to finite model-checking
or to simulation, since it can only deal with finite state programs. Moreover, no
abstraction mechanism is proposed. Hence, our work is complementary to theirs
since it permits to define abstractions in the rewrite model and to prove prop-
erties on Java applets for unbounded sets of inputs or for unbounded execution
paths. In [15], abstractions on reachability analysis are defined but they seem to
be too restrictive to deal with programming language semantics. Instead of tree
automata, Meseguer, Palomino and Mart́ı-Oliet use equations to define approx-
imated equivalence classes. More precisely, they use terminating and confluent
term rewriting systems normalizing every term of a class to its representative.
In order to guarantee safety of approximations, approximation and specification
rules must satisfy strong syntactic constraints. Roughly, approximation TRS
and specification TRS, they use, have to commute. Such properties are hard
to prove on a TRS encoding the Java semantics. Moreover, the approximation
rules we used for class analysis are contextual and cannot easily be expressed as
equations.

Takai [18] also proposed a theoretical version of approximated reachability
analysis over term rewriting systems. This work also combines equations and
tree automata. However, again, syntactic restrictions imposed on the equations
are strong and would prevent us from constructing the kind of approximation
we use on Java bytecode.

In [4], Bouajjani et al. propose a verification methodology based on abstrac-
tions and tree transducer applications on tree automata languages, called Ab-
stract Regular Tree Model Checking. This brings into play a tree transducer τ , a
tree automaton A and an abstraction α. For a given system to verify, τ encodes
its transition relation and L(A) accounts for its set of initial configurations. As
for computing R∗ of a set of terms in rewriting, computing τ∗(L(A)) may not
terminate. A well-suited abstraction α makes the computation converge at the
expense of an over-approximation of the set of configurations actually reachable.
The underlying idea of this technique is close to ours. However, in our case,
the TRS can implement basic computations in the semantics which would be
complicated to specify in terms of transducers.
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As in classical static class analyzes (such as e.g., [17]), we can get several
ranges of precision of k-CFA, depending of the approximation rules. In addition,
starting from an automatically generated approximation, it is possible to adapt
approximation rules so as to get a more precise abstraction and prove specific
properties that may be difficult to show by an analyzer whose abstractions are
built-in (See Section 5.3 for instance).

7 Conclusion

We have defined a technique, based on rewriting and tree automata, for prototyp-
ing static analyzers from the operational semantics of a programming language.
As a test case, we showed how to produce a TRS R modeling the operational
semantics of a given Java program p. In this setting, given a set of inputs E
the set R∗(E) represents the set of program states reachable by p on inputs E,
i.e. the collecting semantics of p. The TRS R is produced automatically and
has a size linear in the size of the source program p. The technique has been
implemented and experimented on a number of standard control-flow analyzes
for Java bytecode, demonstrating the feasibility of the technique.

The exact set of reachable states is not computable in general so we use the
tree automata completion algorithm and approximation rules so as to compute
a finite approximation of the superset of R∗(E). The approximation technique
works at the level of terms and their representation through a tree automata
and has a number of advantages. First, the correctness of the approximation is
guaranteed by the underlying theory and does not have to be proved for each
proposed abstraction. Second, the analysis has easy access to several types of
information (on integers, memory, call stacks), as illustrated in Section 5.3. This
is an advantage compared to the more standard approach which combines several
data flow analyzes (by techniques such as reduced and open product) to gather
the same information. Third, it is relatively easy to fine-tune the analysis by
adding and removing approximation rules.

We have presented our approach in terms of a sequential fragment of Java
bytecode but the term rewriting setting is well suited to deal with the extension
to concurrent aspects of Java and to the handling of exceptions [16,7].
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Abstract. The class of equational theories defined by so-called unify-
stable presentations was recently introduced, as well as a complete and
terminating unification algorithm modulo any such theory. However, two
equivalent presentations may have a different status, one being unify-
stable and the other not. The problem of deciding whether an equational
theory admits a unify-stable presentation or not thus remained open. We
show that this problem is decidable and that we can compute a unify-
stable presentation for any theory, provided one exists. We also provide
a fairly efficient algorithm for such a task, and conclude by proving that
deciding whether a theory admits a unify-stable presentation and com-
puting such a presentation are problems in the Luks equivalence class.

1 Introduction

Some equational axioms are better dealt with if kept apart from other axioms,
by directly embedding them in the deduction mechanism. A typical example is
reasoning modulo commutativity, which avoids having to handle an unorientable
axiom. Of course, in order for this approach to be practical, the considered the-
ory must satisfy certain requirements, and most of those concern unification. An
equational theory a lot of research has focused on is associativity-commutativity
(AC), and in [10], permutative equational theories were introduced as a gener-
alization of AC. The theories in this class enjoy several interesting properties,
in particular, it can be decided in polynomial time whether a theory is permu-
tative, and the word problem for a permutative theory is decidable. However, it
was proved in [14] that there exist undecidable unification problems modulo a
permutative theory. This result was refined in [11] to the subclass of variable-
permuting theories ; these theories are defined by identities of the form s ≈ t,
where t is obtained from s by permuting the positions of the variables of s.

The subclass of leaf-permutative theories is obtained from the previous one
by imposing that all the terms appearing in the presentation are linear. It is
however not practical to reason modulo any leaf-permutative theory either, since
there exist unification problems modulo such theories with infinite complete
sets of unifiers (see, e.g., [13,9]); furthermore, to the best of our knowledge,
the decidability of unification modulo a leaf-permutative theory is still an open
problem.

F. Baader (Ed.): RTA 2007, LNCS 4533, pp. 63–77, 2007.
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Unify-stability. The class of leaf-permutative theories defined by a unify-stable
presentation was introduced in [3] and a generic unification algorithm modulo
any such theory was designed in [4]. This algorithm consists of a set of abstract
inference rules and is thus easy to implement, it is also efficient and always
returns a complete set of unifiers with at most a simply exponential cardinality.
It is thus possible to perform deduction efficiently modulo a theory presented by
a unify-stable set of axioms.

However, an equational theory can admit two equivalent presentations, only
one of which is unify-stable. This is why in this paper we are interested in the
following questions: given an equational theory, how do we know whether it
admits a unify-stable presentation? And if such a presentation exists, how do
we compute it? The first main contribution of this paper is the proof that if
E defines an equational theory admitting a unify-stable presentation, then E
actually contains such a presentation.

The Luks equivalence class. It is natural for permutation groups to arise when
dealing with leaf-permutative equations, and several problems related to leaf-
permutative theories can be reduced to group-theoretic problems. These group-
theoretic problems have interesting complexity properties, and most of them
belong to the Luks equivalence class, a complexity class that is close to the
graph isomorphism problem (see, e.g., [7]). This class is included in NP and
seems to be intermediate between P and NP-complete problems.

Efficient algorithms have been devised and implemented for the problems in
this class (see, e.g., [5,6]), and can therefore be used to solve the problems on leaf-
permutative theories. The second main contribution is the design of an algorithm
that constructs a unify-stable presentation for a theory, if one exists, and the
proof that this computation problem is in the Luks equivalence class. We also
prove that the corresponding decision problem belongs to the same class.

Outline of the paper. We introduce in Section 2 a number of basic or standard
definitions and notations on terms, substitutions and equational theories, and
define precisely the problems we try to solve. In Section 3, after proving a few
easy but necessary properties of permutative presentations, we introduce an order
based on a notion of ground length, and thus solve our problems on the class of
leaf-permutative presentations.

We then define in Section 4 the class of unify-stable presentations, recall some
of their important properties from [4], and parallel the results of Section 3 with
a subsumption ordering. We refine these results in Section 5 by showing that
only a restricted set of terms may appear in a minimal presentation of a unify-
stable theory. A simple algorithm thus solves our computation problems, but we
provide a more subtle one in Section 6 to establish their complexity.

Due to a lack of space, some of the proofs are only outlined in this paper. A
longer version, containing the complete proofs, is available in [2].
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2 Preliminaries

We will use mostly standard definitions and notations, and we refer the reader to
[1] for details. We build terms on a fixed infinite set of variables X , and we only
consider finite signatures Σ disjoint from X . By Σ-terms we mean terms built
on Σ and X . A Σ-identity is an ordered pair of Σ-terms, denoted by t ≈ t′; t
and t′ are respectively its left- and right-hand sides. It is linear if both sides are
linear. The set of positions of a term t is denoted by Pos(t), and the empty string
is denoted by ε. The subterm of t at position p is denoted by t|p; it is replaced
by s in t[s]p. A variable position p in t is the position of a variable t|p ∈ X .

The result of applying a substitution μ to a term t is denoted by tμ, hence
substitutions are composed in reverse notation: tμν is the result of applying ν ◦μ
to t. A substitution ρ is a variable renaming if it is a permutation of X . Then
tρ is a variant of t, denoted by t ∼ tρ, the identity sρ ≈ tρ is a variant of s ≈ t,
and the substitution μρ is a variant of μ. The most general unifier of two terms
s and t is denoted by mgu(s, t).

A presentation E is a pair consisting of a (finite) signature ΣE and a finite
set of ΣE-identities, also denoted by E. We write E |= s ≈ t or s ≈E t if the
ΣE-identity s ≈ t holds in all ΣE-algebras in which all the identities in E are
true. The relation ≈E is the equational theory induced by E, and we say that E
is a presentation of this theory. If E and F are two presentations of the same
theory (i.e. they are equivalent), we may say that one is a presentation of the
other. A presentation E is minimal if no strict subset of E is equivalent to E; it
is standard if distinct identities in E do not share variables.

For any class of presentations E , we consider the following decision or com-
putation problems relative to E . We denote by EqFE any function that, given
as input a presentation E, returns an equivalent presentation in E if one exists,
and Fail otherwise. We denote by EqPE the corresponding decision problem, i.e.
whether the input E admits an equivalent presentation in E . Finally, we consider
the uniform word problem for E , or UWPE , which takes as input a presentation
E ∈ E and two ΣE-terms s and t, and outputs the truth value of E |= s ≈ t.

3 Permutative and Leaf-Permutative Presentations

We first establish some properties of permutative theories which we then use
to design a simple decision procedure that tests whether an equational theory
admits a permutative (resp. leaf-permutative) presentation or not.

Definition 1. For any Σ-term t we denote by !t" the multiset of symbols occur-
ring in t. A Σ-identity t ≈ t′ is permutative if !t" = !t′"; it is leaf-permutative if
it is permutative, linear and t ∼ t′. For any presentation E, the leaf-permutative
language of E, denoted by LE, is the set of left-hand sides of all leaf-permutative
identities in E.

A presentation is (leaf-)permutative if it only contains (leaf-)permutative
identities. We let P (resp. L) denote the class of permutative (resp. leaf-
permutative) presentations.
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Note that a leaf-permutative identity is always of the form l ≈ lσ, where l is linear
and σ is a permutation of Var(l). For instance, the axiom of commutativity can
be written f(x, y) ≈ f(x, y) (x y), where (x y) is the cycle notation for the permu-
tation {x ← y, y ← x}. The axiom of associativity f(f(x, y), z) ≈ f(x, f(y, z))
cannot be written this way, hence is not leaf-permutative, but it is permutative
since both sides are built on the same multiset of symbols {f, f, x, y, z}.

The class of permutative presentations enjoys the following stability property.

Theorem 1. An equational theory admits a permutative presentation iff all its
presentations are permutative.

Proof. For any presentation E, by Birkhoff’s Theorem, all identities t ≈E t′ can
be decomposed into finite sequences of reduction steps. If E ∈ P then these
reduction steps preserve !t", hence !t" = !t′", and t ≈E t′ is permutative. Since
all presentations of ≈E are included in ≈E, they are all permutative. 	


It is therefore clear that a presentation admits an equivalent permutative pre-
sentation only if it is already permutative.

Corollary 1. EqPP is decidable and EqFP is computable.

A more important and well-known (see, e.g., [10]) property is:

Theorem 2. UWPP is decidable.

Proof. This is a consequence of the fact that for every E ∈ P and ΣE-term t,
the E-congruence class of t is included in the set of all ΣE-terms t′ such that
!t′" = !t", hence is finite. 	


Since L ⊂ P , Theorem 2 entails the decidability of the uniform word problem
for L. On the opposite, Theorem 1 does not extend to leaf-permutative pre-
sentations. For instance, to the leaf-permutative axiom of commutativity for f
we can add f(a, b) ≈ f(b, a) (if we have constants a and b in Σ), yielding an
equivalent but non leaf-permutative presentation. This presentation is of course
not minimal, but this is not important here. Another example is the theory AC:
its usual presentation is minimal and not leaf-permutative, yet AC admits a
leaf-permutative presentation (see below).

By Theorem 1 it is obvious that a presentation E can only admit a leaf-
permutative presentation if E is permutative. It is also clear that not all permu-
tative presentations admit leaf-permutative presentations, as witnessed by the
axiom of associativity. In order to search for leaf-permutative axioms in a finite
set we introduce some new notations.

Definition 2. Given a term t, its ground length, denoted by |t|g, is the cardi-
nality of the multiset !t" \ X . The ground length of an identity t ≈ t′ is defined
by |t ≈ t′|g = max(|t|g, |t′|g). Given a presentation E, its ground length |E|g is
the maximal ground length of its elements. For any natural number n, we denote
by E≤n the subset of identities in E whose ground lengths are less than or equal
to n.
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Of course in !t" \X we discard all occurrences of variables, so that for instance,
if a is a constant and x ∈ X , then we have |f(x, f(a, x))|g = 3. Note also that
|s ≈ t|g = |t ≈ s|g, and hence (E−1)≤n = (E≤n)−1. We now show that identities
deduced by reduction have a greater ground length than their premiss.

Lemma 1. For all terms s, s′, t, t′, if t→s≈s′ t′ then |s ≈ s′|g ≤ |t ≈ t′|g.

Proof. Since there is a position p of t and a substitution μ such that t|p = sμ
and t′ = t[s′μ]p, we have

|s|g ≤ |sμ|g = |t|p|g ≤ |t|g and |s′|g ≤ |s′μ|g = |t′|p|g ≤ |t′|g,

hence obviously max(|s|g, |s′|g) ≤ max(|t|g, |t′|g). 	


The permutative identities used in a deduction can thus be bounded.

Theorem 3. For any presentation E and presentation F ∈ P, we have F |= E
iff F≤|E|g |= E.

Proof. The if part is obvious. For the only if part, consider an identity t ≈ t′

in E. By F |= E we have t ≈F t′, and since F ∈ P the F -congruence class of t
only contains terms s such that !s" = !t" = !t′". These terms all have the same
ground length n = |t ≈ t′|g ≤ |E|g. By Birkhoff’s Theorem and Lemma 1, t
reduces to t′ by identities in F ∪ F−1 whose ground lengths are bounded by n.
Since (F ∪F−1)≤n = F≤n∪(F≤n)−1 and F≤n ⊆ F≤|E|g we have F≤|E|g |= t ≈ t′.

	


This means that, in the search for leaf-permutative axioms for ≈E, we need
to consider only leaf-permutative identities whose sides have a ground length
bounded by that of E. But since the elements of X are terms of ground length
0, the set of terms of bounded ground length is always infinite. This is why we
work modulo ∼.

Definition 3. Let S and S′ both denote sets of terms or sets of identities. We
write S ⊂∼ S′ if every element of S has a variant in S′. We say that S is a
variant of S′, written S ∼ S′, if S ⊂∼ S′ and S′ ⊂∼ S. We say that S is ∼-reduced
if no two distinct elements of S are variants of each other; it is obvious that for
every S there is a ∼-reduced set S′ such that S ∼ S′.

For any finite signature Σ and natural number n we let T≤n(Σ) denote a
∼-reduced set of Σ-terms that is a variant of the set of Σ-terms t such that
|t|g ≤ n. Similarly, we let I≤n(Σ) denote a ∼-reduced set of Σ-identities that is
a variant of the set of Σ-identities s ≈ t such that |s ≈ t|g ≤ n.

Since Σ is finite, T≤n(Σ) and I≤n(Σ) are both finite for all n. For instance, if
Σ contains a unary function symbol f , a constant a and nothing else, then we
can choose for T≤2(Σ) the set {x, a, f(y), f(a), f(f(x))} (the particular variables
used in each term are of course irrelevant). The following theorem shows that if
E admits a presentation in L then such a presentation can be found in I≤n(Σ).
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Theorem 4. A presentation E admits a presentation in L iff F |= E, where

F = {t ≈ t′ ∈ I≤|E|g(ΣE) | t ≈ t′ is leaf-permutative, and t ≈E t′}.

Proof. We have E |= F and F ∈ L, hence the if part is trivial. Conversely, if E
admits a presentation F ′ ∈ L, then by Theorem 3 F ′

≤|E|g is also a presentation
of E. Necessarily F ′

≤|E|g
⊂∼ F , hence F is a presentation of E. 	


Corollary 2. EqPL is decidable and EqFL is computable.

Proof. If a presentation E admits a leaf-permutative presentation, then it is
permutative according to Theorem 1. We thus check whether E is permutative,
and if so, we can compute the finite set F of Theorem 4, since ≈E is then
decidable according to Theorem 2. Since F is permutative, ≈F is also decidable,
and we can thus decide whether F |= E or not. 	


From a practical point of view, it might be more efficient to compute the leaf-
permutative presentation F by enumerating the linear terms l in T≤|E|g(ΣE).
For each such l we compute its E-congruence class, and keep only the variants l′

of l; to each variant corresponds the candidate leaf-permutative identity l ≈ l′.
We also compute the F -congruence class of l, and add each new leaf-permutative
identity l ≈ l′ to F only if it does not already hold in F . We then check which
yet unproven identity in E becomes true in F .

For instance, considering the usual presentation of AC, we have |AC|g = 2,
and we need only consider the linear terms l1 = f(x, y), l2 = f(f(x, y), z) and
l3 = f(x, f(y, z)) (the linear term x can always be discarded, since it yields only
a trivial leaf-permutative identity x ≈ x). We start with F = ∅; the only identity
built on l1 which is true in AC and not in ∅ is f(x, y) ≈ f(y, x), so we add it to
F . Only one element of AC is not true in F : the axiom of associativity. Indeed,
the F -congruence classes of its left and right-hand sides are disjoint:

{f(f(x, y), z), f(f(y, x), z), f(z, f(x, y)), f(z, f(y, x))},
{f(x, f(y, z)), f(x, f(z, y)), f(f(y, z), x), f(f(z, y), x)}.

We thus consider l2: its AC-congruence class contains 12 terms; half of them
are variants of l2, two of which are in l2’s F -congruence class. The remaining 4
terms are

f(f(x, z), y), f(f(z, x), y), f(f(y, z), x), f(f(z, y), x).

We choose to add f(f(x, y), z) ≈ f(f(x, z), y) to F , which suffices to merge
the F -congruence classes above: f(f(x, y), z) ≈F f(f(y, x), z) ≈F f(f(y, z), x).
Hence we are done, and

F = {f(x, y) ≈ f(y, x), f(f(x, y), z) ≈ f(f(x, z), y)}

is a leaf-permutative presentation of AC.
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It should be mentioned that these results are perfectly valid if we replace the
ground length of Definition 2 by the standard length, i.e. the cardinality of !t".
However, the algorithms described above would be less efficient in the presence
of constants, since they have the same length as variables. For instance, with a
binary function symbol f and a constant symbol a, an enumeration1 of linear
terms of length less than that of f(x, y) would include a, f(a, a), f(a, x), f(x, a)
and f(x, y); with the ground length we keep only a and f(x, y). Furthermore, the
ground length will be necessary in the sequel, in combination with Theorem 3.

4 Unify-Stable Presentations

In this section we formally define the class of unify-stable presentations. After
restating some of their properties from [4], we prove a result similar to that
of Theorem 3. This result entails a first restriction on the set of identities to
consider when searching for a unify-stable presentation of an equational theory,
provided one exists. We shall not directly determine such a presentation, but
further restrict the set of identities to consider in the following section. We start
by restating definitions from [4].

Definition 4. Given a presentation E and a linear term l, the permutation
group entailed by E for l, denoted by ΓE(l), is the set of permutations σ of
Var(l) such that l ≈E lσ.

Given a substitution μ, we define the automorphism group of μ, denoted by
Aut(μ), as the set of permutations σ of X such that for every variable x ∈ X we
have xσμ ∼ xμ.

A fundamental property of these sets is that they are permutation groups.
Though infinite, the groups Aut(μ) have a rather simple structure: for instance
Aut({x← f(y), y ← a}) contains all the permutations of X \ {x, y}. The finite
groups ΓE(l) are more interesting. Consider for instance the axiom

g(f(x, y), f(z, u)) ≈ g(f(x, z), f(y, u)). (1)

Let l = g(f(x, y), f(z, u)), then Γ(1)(l) contains only two permutations: the
identity and (y z). But if we add the commutativity axiom for f (denoted by
Cf ), then Γ(1)+Cf

(l) is generated by (y z), (x y) and (z u), and thus contains all
24 permutations of Var(l) = {x, y, z, u}; this can be checked by using the GAP
system [6]. If we add instead the commutativity axiom for g, we have

g(f(x, y), f(z, u)) →Cg g(f(z, u), f(x, y)) = g(f(x, y), f(z, u)) (x z)(y u),

hence the group Γ(1)+Cg
(l) is generated by (y z) and (x z)(y u), and contains 8

permutations.

1 In practice we would only enumerate linear terms with at least two variables, the
only ones allowing to build non-trivial identities.
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Definition 5 (Definition 4.1 of [4]). A standard presentation E ∈ L is unify-
stable if, for any two identities l ≈ lσ and l′ ≈ l′σ′ in E,

1. if l and l′ are unifiable, then σ ∈ Aut(mgu(l, l′)),
2. if there is a non-variable position p of l other than ε such that l|p is unifiable

with some variant of l′, then there is a substitution μ such that l′μ = l|p and
σ′ ∈ Aut(μ).

We let U denote the class of unify-stable presentations.

Note that, for all E ∈ U and E′ ⊆ E, we have E′ ∈ U . Also, it is simple to check
whether a presentation E ∈ L is unify-stable or not. This involves syntactic
unification between l|p and l′ for all pair of terms l, l′ in LE and all positions p
of l, and checking membership of substitutions σ in groups Aut(μ) (i.e. whether
for all variables x in their domain, the linear terms xσμ and xμ are variants).
This can clearly be done in time polynomial in the length of E.

For instance it is easy to see that the usual presentation of AC is not unify-
stable: the mgu of f(x, y) and f(f(x′, y′), z′) is μ = {x← f(x′, y′), y ← z′}, and
(x y) �∈ Aut(μ) since xμ �∼ yμ. Intuitively, this means that reducing the term
l = f(f(x′, y′), z′) at the root by means of Cf results in a term which is not a
variant of l.

The presentations (1) + Cf and (1) + Cg defined previously are both unify-
stable. If however in (1) we replace the symbol g by f , we obtain an axiom that
by itself is not unify-stable. It has actually been shown in [9] that unification
modulo this axiom is not finitary.

We now extract from [4] some less trivial properties of unify-stable presenta-
tions.

Theorem 5. For every E ∈ U there exists a set S of linear terms such that
LE ⊆ S, and

(1) For all ΣE-terms t, t′ other than variables or constants, and such that
t ≈E t′, there exist a term l ∈ S \ X , a permutation σ of Var(l) and two
substitutions μ, μ′ such that lμ = t, lμ′ = t′ and E |= Fl |= t ≈ t′, where
Fl = {l ≈ lσ} ∪ {xσμ ≈ xμ′ | x ∈ Var(l)}.

(2) For all l ∈ S the E-congruence class of l is {lσ | σ ∈ ΓE(l)}.

Property (1) is similar to (and stronger than) syntacticness of E (see [9]), and
allows to use the elements of the set S for decomposing equations modulo E.
Property (2) shows that these terms are also special since their E-congruence
class pertains essentially to group-theoretic notions. The set S can be obtained
from E as in Definition 4.2 of [4], i.e. S is the set of most general instances of
any number of elements of LE . Alternatively, if we perform basic paramodulation
inferences on E, we obtain the finite saturated set {l ≈ lσ | l ∈ S, σ ∈ ΓE(l)},
from which S can be extracted. By [12] this implies a number of nice properties
for E-unification (e.g. it is finitary). Hence unify-stability appears as a sufficient
condition for a theory to admit a leaf-permutative presentation saturated by
basic paramodulation, though it is not a necessary condition. But, as mentioned



Determining Unify-Stable Presentations 71

above, membership in U can be tested in polynomial time, while the saturated
set, or the set of terms S, can have cardinality exponential in the size of E.
We will use the following subsumption ordering to bound the leaf-permutative
identities appearing in a unify-stable presentation.

Definition 6. Let t and t′ be two terms. For any position p in t′, we write
t �p t

′ if there exist a substitution μ such that tμ = t′|p. We write t � t′ if there
exists a position p ∈ Pos(t′) such that t �p t

′. We write t � t′ if t � t′ and t′ �� t.
Given a presentation E and a ΣE-term t, we let E�t (resp. E�t) denote the

set of identities s ≈ s′ in E such that s � t or s′ � t (resp. s � t or s′ � t). If
E ∈ L and t is linear, we let E∼t denote the set of identities l ≈ lσ in E such
that l ∼ t.

It is standard that s ∼ t iff s � t and t � s. An obvious consequence is that
E�s = E�t when s ∼ t. Also note that s ≈ s′ is in E�t iff s′ ≈ s is in (E−1)�t,
hence (E�t)−1 = (E−1)�t. We thus obtain a result analogous to Lemma 1.

Lemma 2. For any presentation E and ΣE-terms t and t′, if t →E t′ then
t→E′ t′, where E′ = E�t ∩ E�t′ .

Proof. There exist an identity s ≈ s′ in E, a position p in t and a substitution
μ such that t|p = sμ and t′ = t[s′μ]p. We thus have s � t and s′ � t′, hence the
identity s ≈ s′ belongs to both E�t and E�t′ and we get t→E′ t′. 	


With an additional condition we get a result analogous to Theorem 3.

Lemma 3. For any presentation E and ΣE-terms t, t′ such that t ≈E t′, if the
E-congruence class of t only contains variants of t, then E�t |= t ≈ t′.

Proof. By Birkhoff’s Theorem there exists a finite sequence of terms t1, . . . , tn
such that t = t1, t′ = tn and ti →E∪E−1 ti+1 for all 1 ≤ i ≤ n− 1. By Lemma 2
the identity ti ≈ ti+1 is entailed by the set (E∪E−1)�ti ∩ (E∪E−1)�ti+1 , which
is equal to (E ∪ E−1)�t since the ti’s are all in the E-congruence class of t,
hence are all variants of t. We therefore have (E ∪ E−1)�t |= t ≈ t′, and since
(E ∪E−1)�t = E�t ∪ (E�t)−1, this yields E�t |= t ≈ t′. 	


Of course this condition is rather strong, and not true for all terms, e.g. the
congruence class of f(a, b) modulo commutativity contains f(b, a) which is not
a variant of f(a, b). The properties of unify-stable presentations still entail a
generalization of this result to all terms.

Theorem 6. For any E ∈ U and pair of ΣE-terms t, t′, we have t ≈E t′ iff
E�t ∩ E�t′ |= t ≈ t′.

Proof. The if part is trivial. For the only if part, we consider a set S as in
Theorem 5, and proceed by induction on t, i.e. we assume that the implication
holds for all strict subterms of t.

If t is a constant or a variable, since t ≈E t′ is permutative we have t = t′, so
that t ≈ t′ is universally true.
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Otherwise, from t ≈E t′ we similarly conclude that t′ cannot be a constant or
a variable either. Hence according to Theorem 5(1) there exist a term l ∈ S \X ,
a permutation σ of Var(l) and two substitutions μ, μ′ such that lμ = t, lμ′ = t′

and E |= Fl |= t ≈ t′, where

Fl = {l ≈ lσ} ∪ {xσμ ≈ xμ′ | x ∈ Var(l)}.

The term l cannot be a variable, hence for every variable x of l, xμ is a strict
subterm of lμ = t. Since E |= Fl we deduce that xσμ ≈E xμ′, and by the
induction hypothesis E�xσμ ∩ E�xμ′ |= xσμ ≈ xμ′. We also have l ≈E lσ, and
since l ∈ S we know by Theorem 5(2) that the E-congruence class of l only
contains variants of l. Therefore by Lemma 3 we get E�l |= l ≈ lσ.

For every x ∈ Var(l), since xσμ and xμ′ are subterms of t and t′ respectively,
we have xσμ � t and xμ′ � t′, hence E�xσμ ⊆ E�t and E�xμ′ ⊆ E�t′ . Similarly,
from lμ = t and lμ′ = t we have l � t and l � t′, so that E�l ⊆ E�t ∩ E�t′ . We
conclude that E�t ∩ E�t′ |= Fl, and therefore that E�t ∩ E�t′ |= t ≈ t′. 	


We could directly use this result to determine a finite set of leaf-permutative
identities that contains suitable axioms, as in Theorem 4. However, since unify-
stability results from an interaction between axioms, and not just independent
properties of each axiom as for presentations in L, we would need to search
for suitable subsets of this finite set of identities. This is why it is desirable to
determine as small a set as possible. In the next section, we further exploit the
unify-stable hypothesis to determine a relatively “small” set.

5 Leaf-Permutative Languages and Minimality

In this section, we prove that an equational theory defined by a presentation E
admits a unify-stable presentation if and only if E contains such a presentation.
We actually prove the stronger result that any minimal presentation of E must
be unify-stable, which already entails a reasonably efficient algorithm that com-
putes a unify-stable presentation for E if one exists. We will describe an optimal
algorithm for this problem in the following section.

We first prove a semantic generalization of the property that every subset of
a presentation in U is also in U .

Theorem 7. For every standard leaf-permutative presentation E and F ∈ U , if
F |= E and LE ⊂∼ LF then E ∈ U .

Proof (sketch). Since F |= E, for every linear term l we have ΓE(l) ⊆ ΓF (l).
Let S be a set of linear ΣF -terms obtained from F according to Theorem 5.
In order to prove that E is unify-stable, we consider two identities l ≈ lσ and
l′ ≈ l′σ′ in E. Since l and l′ are in LE they have variants lρ and l′ρ′ in LF , hence
in S. Assuming either that l or l|p is unifiable with a variant of l′, we get the
same property on lρ and l′ρ′. We can then prove membership of σ or σ′ in the
required automorphism group, using the inclusions ΓE(l) ⊆ ΓF (l), Definition
3.11 of [4] on lρ and l′ρ′, and showing that the groups involved are consistently
transformed by ρ and ρ′. 	
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We can thus restrict the search for suitable leaf-permutative axioms for E to
those built on the linear terms belonging to the leaf-permutative language LF of
some equivalent unify-stable presentation F , and we will see that such a language
is readily available. To determine this language, we first need results combining
the subsumption order with the ground length.

Lemma 4. For any presentation E ∈ L, term s and linear term l:

(1) if s � l then |s|g ≤ |l|g,
(2) if s � l and |s|g = |l|g then s ∼ l,
(3) |E�l|g < |l|g.

Proof. (1) There is a position p in l and a substitution μ such that sμ = l|p,
hence we get |s|g ≤ |sμ|g = |l|p|g ≤ |l|g as in Lemma 1.

(2) From |s|g = |l|g we deduce that p = ε and |s|g = |sμ|g, hence !s" \ X and
!sμ" \ X have the same cardinality. But all occurrences in !s", other than
variables, are in !sμ"; therefore !s" \ X = !sμ" \ X . Hence for all variables
x ∈ Var(s), xμ must also be a variable2. Since sμ = l is linear, μ must be
injective from Var(s) to Var(l), therefore s ∼ l.

(3) From what precedes, if s � l then |s|g < |l|g, which clearly yields |E�l|g < |l|g.
	


Lemma 5. For any E ∈ L and linear ΣE-terms l and l′ we have

|E�l ∩ E�l′ |g ≤ |l ≈ l′|g.

The equality holds only if l ∼ l′.

Proof. Since E ∈ L, all identities s ≈ s′ in the set E�l∩E�l′ are leaf-permutative,
hence s ∼ s′, and therefore s � l and s � l′. By Lemma 4(1) we thus have
|s|g = |s′|g ≤ min(|l|g, |l′|g); therefore

|s ≈ s′|g = |s|g ≤ min(|l|g, |l′|g) ≤ max(|l|g, |l′|g) = |l ≈ l′|g.

This proves that |E�l ∩ E�l′ |g ≤ |l ≈ l′|g.
If the equality holds there must be an identity s ≈ s′ in E�l ∩E�l′ such that

|s ≈ s′|g = |l ≈ l′|g, hence min(|l|g, |l′|g) = max(|l|g, |l′|g), which shows that
|l|g = |l′|g = |s|g. We also have s � l and s � l′; by Lemma 4(2) we deduce that
s ∼ l and s ∼ l′, and therefore l ∼ l′. 	


We now prove that the terms occurring in a minimal presentation must also
occur in every equivalent unify-stable presentation.

Theorem 8. If E is minimal and admits a unify-stable presentation F then
E ∈ L and LE ⊂∼ LF .

2 This is where the notion of ground length is necessary, and cannot be replaced by
the standard length. For instance, we have f(x, y, z) � f(x, y, a), and these linear
terms have the same length, but they are not variants.
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Proof. For all identities t ≈ t′ in E we have t ≈F t′; by Theorem 6 we deduce that
F ′ |= t ≈ t′, where F ′ = F�t ∩ F�t′ . The presentation E must be permutative
by Theorem 1, hence by Theorem 3 E |= F ′ iff E≤|F ′|g |= F ′. But E |= F ′ holds
since F ′ ⊆ F , therefore E≤|F ′|g |= t ≈ t′. In the sequel we first prove that t and
t′ are linear, and then that t ∼ t′, thus showing that t ≈ t′ is leaf-permutative
and that E ∈ L. We then prove that t has a variant in LF , hence that LE ⊂∼ LF .

Suppose t is not linear, then t′ is not linear either, since !t" = !t′". Since
F only contains linear identities, we deduce that F ′ = F�t ∩ F�t′ . Consider an
identity l ≈ lσ in F ′, by definition l � t, l � t′. Since F ∈ U and l ∈ LF , by
Theorem 5(2) the F -congruence class of l contains only variants of l. Since E
and F are equivalent, l ≈E lσ holds, hence by Lemma 3 we have E�l |= l ≈ lσ.
Since t ≈ t′ cannot belong to any set E�l with l ∈ LF ′ , it cannot belong to their
union either, and we have just proved that⋃

l∈LF ′

E�l |= F ′ |= t ≈ t′.

This contradicts the minimality of E; the terms t and t′ are therefore linear.
Suppose now that t �∼ t′, then by Lemma 5 we get |F ′|g < |t ≈ t′|g; the

identity t ≈ t′ cannot belong to E≤|F ′|g . Since E≤|F ′|g |= t ≈ t′, this contradicts
the minimality of E, the identity t ≈ t′ is therefore leaf-permutative.

We finally suppose that t has no variant in LF .Then F ′ = F�t = F�t, and by
Lemma 4(3) |F ′|g < |t|g = |t ≈ t′|g. As above this means that t ≈ t′ does not
belong to E≤|F ′|g , which is again impossible. 	

We can thus drastically restrict the search for leaf-permutative axioms to the
ones that are already given.

Theorem 9. A standard presentation E admits a unify-stable presentation iff
every minimal presentation E′ ⊆ E of E is unify-stable.

Proof. The if part is trivial, because there is always a minimal presentation of
E included in E. For the only if part, suppose that F ∈ U is a presentation of E
and that E′ ⊆ E is minimal and equivalent to E, then F is also a presentation
of E′. By Theorem 8 we have E′ ∈ L and LE′ ⊂∼ LF . Since E′ is contained in E
it is obviously standard, by Theorem 7 we get E′ ∈ U . 	

Corollary 3. EqPU is decidable and EqFU is computable.

Proof. We first check whether E is permutative, and if so we standardize E and
then eliminate all redundant identities, i.e. the identities s ≈ t in E such that
E \ {s ≈ t} |= s ≈ t, which is decidable according to Theorem 2. We are left
with a minimal and standard presentation E′ of E, and E′ is an answer to the
problem iff it is unify-stable, which is of course decidable. 	

For instance, we deduce that AC has no presentation in U , since AC is minimal
and AC �∈ U . Note that this result can also be deduced from the fact that
there exist unification problems modulo AC with complete sets of unifiers of
double-exponential cardinality (see [8]), while unify-stable unification is simply
exponential.
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FU (E) =
F := ∅; E′ := E \ ≈F ;
while ∃l ≈ lσ ∈ E′ s.t. E′

�l = ∅ do
F := F ∪ E′

∼l;
if F �∈ U then return Fail;
E′ := E′ \ ≈F ;

done;
return F

Fig. 1. From L to U

6 Complexity

We now prove that EqPE and EqFE are both in the Luks equivalence class by
providing an optimal algorithm that computes a unify-stable presentation for
an equational theory, provided one exists. It was shown in [3] that the problem
UWPU is in the Luks equivalence class. The algorithm presented in Corollary 3
solves EqFU by using an oracle for the uniform word problem for P , but not
for UWPU , and therefore does not provide a Turing-reduction from EqFU to
UWPU . For this we need the more subtle algorithm of Figure 1 that, given a
presentation E ∈ L, builds a unify-stable presentation for E starting from the
empty set.

Lemma 6. For any standard E ∈ L, FU (E) returns a unify-stable presentation
of E if one exists, and Fail otherwise.

Proof. It is easy to see that, each time we enter the loop, we have F ∈ U ,
E′ ∪ F ⊆ E, E′ = E \ ≈F and E′ ∪ F |= E since we only remove from E′ the
consequences of F . It is also clear that, at each iteration at least the identity
l ≈ lσ is removed from E′ (because it is added to F ). The iteration ends when
E′ = ∅ or if a failure occurs. Hence the algorithm terminates, and if it returns
F , then we must have E′ = ∅, otherwise the test of the while loop obviously
succeeds (there is a smallest l ∈ LE′ w.r.t. �); we therefore have F ⊆ E, F |= E
and F ∈ U , i.e. F is a unify-stable presentation of E.

We now assume that E admits a unify-stable presentation, and show that
FU (E) computes one of those. We need to establish another invariant for the
loop: that there exists a presentation U ∈ U of E such that F ⊆ U ⊆ E.
This is true before the first iteration according to Theorem 9, since F = ∅.
Suppose now that it is true when we enter the loop, and that there is an identity
l ≈ lσ in E′ such that E′

�l = ∅. Since E′ ⊆ E we have E′
∼l ⊆ E, so that

F ∪ E′
∼l ⊆ U ∪ E′

∼l ⊆ E. Hence obviously U ′ = U ∪ E′
∼l is a presentation of E,

and there only remains to show that U ′ ∈ U .
Since E′ = E\≈F , we have E′

�l = E�l \≈F = ∅. Thus E�l ⊆ ≈F , i.e. F |= E�l.
From U ⊆ E we deduce U�l ⊆ E�l, hence F |= U�l. But F �|= l ≈ lσ, since this
identity is in E′, hence U�l �|= l ≈ lσ. However, since U is a presentation of E,
we have U |= l ≈ lσ and by Theorem 6, U�l |= l ≈ lσ. This proves that U�l \U�l

cannot be empty, hence that U must contain an identity whose left-hand side is
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a variant of l. Thus LU ∼ LU ∪ {l} = LU ′ , and since U |= U ′, by Theorem 7 we
get U ′ ∈ U .

Since F ∪ E′
∼l ⊆ U ′, it is obvious by Definition 5 that this new value of F

is also unify-stable, and that the value Fail cannot be returned if E admits a
unify-stable presentation. 	


We can now use this algorithm to efficiently compute a function EqFU .

Theorem 10. EqFU polynomially reduces to UWPU .

Proof. We first check whether the input E to EqFU is permutative, and return
Fail if it is not. If E ∈ P , we standardize it and split it into a set N of non-leaf-
permutative identities and a set L ∈ L. According to Theorem 9, if E admits a
unify-stable presentation then one is included in L, hence L and E are equivalent.
We thus evaluate FU (L) using the oracle for UWPU ; if it fails, then L, and thus
E have no unify-stable presentation. Otherwise, it returns a presentation F ∈ U
of L. We finally test whether F |= N or not, again using the oracle for UWPU . If
this holds, then we return F since it is a presentation of E, otherwise we return
Fail because E is not equivalent to L.

It is easy to see that this algorithm runs in polynomial time; the number of
iterations in FU (L) is bounded by |L|, the test F �∈ U is polynomial in the length
of F ⊆ L, and the oracle is used at most |L|(|L|+ 1)/2 + |N | times. 	


We finally prove that the complexity of this algorithm is optimal.

Theorem 11. UWPU reduces to EqPU by a polynomial transformation.

Proof. Starting from the input E ∈ U and ΣE-terms t, t′ of UWPU we compute
an instance E′ of EqPU by adding to a standardized E an identity s ≈ s′,
obtained from t ≈ t′ by replacing variables by new constant symbols. This
transformation is obviously polynomial, and E |= s ≈ s′ iff E |= t ≈ t′. Moreover,
since s and s′ are ground ΣE′-terms, they are variants only if they are identical,
hence the identity s ≈ s′ is either trivially true or not leaf-permutative.

Suppose E′ is a positive instance of EqPU , then by Theorem 9 any minimal
presentation F ⊆ E′ of E′ is in U , hence is leaf-permutative, and cannot contain
s ≈ s′. This proves that F ⊆ E, hence that E |= s ≈ s′, we deduce that
E |= t ≈ t′. Conversely, if E′ has no unify-stable presentation, then E cannot be
a presentation of E′, hence E �|= s ≈ s′, and therefore E �|= t ≈ t′. 	


It is clear that EqPU polynomially reduces to EqFU , we conclude:

Corollary 4. EqFU and EqPU are in the Luks equivalence class.

7 Conclusion

In this paper, we investigated the problem of deciding whether an equational
theory admits a unify-stable presentation, and presented an algorithm that
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solves this problem. We also proved that this problem is in the Luks equiva-
lence class, and can therefore be solved efficiently by using powerful tools from
computational group theory. This result, together with the unification algorithm
of [4] make it reasonable to envisage performing deduction modulo any leaf-
permutative theory under the unify-stability condition.

A direction for future work is to investigate how to define a broader class
of leaf-permutative theories including that of associativity-commutativity and
enjoying similar properties. Such considerations may also provide insights on
other problems such as the decidability of unification in leaf-permutative the-
ories. Another direction for future work, in the case where a presentation E is
not unify-stable, is to investigate how to extract the “best” possible subset of E
that is unify-stable, where the meaning of “best” remains to be defined.
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Abstract. Different pattern calculi integrate the functional mechanisms
from the λ-calculus and the matching capabilities from rewriting. Several
approaches are used to obtain the confluence but in practice the proof
methods share the same structure and each variation on the way pattern-
abstractions are applied needs another proof of confluence.

We propose here a generic confluence proof where the way pattern-
abstractions are applied is axiomatized. Intuitively, the conditions guar-
antee that the matching is stable by substitution and by reduction.

We show that our approach directly applies to different pattern cal-
culi, namely the lambda calculus with patterns, the pure pattern calculus
and the rewriting calculus. We also characterize a class of matching al-
gorithms and consequently of pattern-calculi that are not confluent.

1 Introduction

Pattern matching, i.e. the ability to discriminate patterns is one of the main
basic mechanisms human reasoning is based on. This concept is present since
the beginning of information processing modeling. Instances of it can be traced
back to pattern recognition and it has been extensively studied when dealing
with strings [15], trees [9] or feature objects [1].

It is somewhat astonishing that one of the most commonly used models of
computation, the lambda calculus, uses only trivial pattern matching. This has
been extended, initially for programming concerns, either by the introduction of
patterns in lambda calculi [19], or by the introduction of matching and rewrite
rules in functional programming languages. There are several formalisms that
address the integration of pattern matching capabilities with the lambda calcu-
lus; we can mention the λ-calculus with patterns [24], the rewriting calculus [6],
the pure pattern calculus [10] and the λ-calculus with constructors [2].

Each of these pattern-based calculi differs on the way patterns are defined
and on the way pattern-abstractions are applied. Thus, patterns can be simple
variables like in the λ-calculus, algebraic terms like in the algebraic ρ-calculus [7],
special (static) patterns that satisfy certain (semantic or syntactic) conditions
like in the λ-calculus with patterns or dynamic patterns that can be instantiated
and possibly reduced like in the pure pattern calculus and some versions of the
ρ-calculus. The underlying matching theory strongly depends on the form of the
patterns and can be syntactic, equational or more sophisticated [10,4].

F. Baader (Ed.): RTA 2007, LNCS 4533, pp. 78–92, 2007.
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Although some of these calculi just extend the λ-calculus by allowing pattern-
abstractions instead of variable-abstractions the confluence of these formalisms
is lost when no restrictions are imposed.

Several approaches are then used to recover confluence. One of these tech-
niques consists in syntactically restricting the set of patterns and then showing
that the reduction relation is confluent for the chosen subset. This is done for
example in the λ-calculus with patterns and in the ρ-calculus (with algebraic
patterns). The second technique considers a restriction of the initial reduction
relation (that is, a strategy) to guarantee that the calculus is confluent on the
whole set of terms. This is done for example in the pure pattern calculus where
the matching algorithm is a partial function (whereas any term is a pattern).

Nevertheless we can notice that in practice, the proof methods share the same
structure and that each variation on the way pattern-abstractions are applied
needs another proof of confluence. There is thus a need for a more abstract and
more modular approach in the same spirit as in [18,11]. A possible way to have
a unified approach for proving the confluence is the application of the general
and powerful results on the confluence of higher-order rewrite systems [14,17,21].
Although these results have already been applied for some particular pattern-
calculi [5] the encoding seems to be rather complex for some calculi and in
particular for the general setting proposed in this paper. Moreover, it would
be interesting to have a framework where the expressiveness and (confluence)
properties of the different pattern calculi can be compared.

In this paper, we show that all the pattern-based calculi using a unitary match-
ing algorithm can be expressed in a general calculus parameterized by a func-
tion that defines the underlying matching algorithm and thus the way pattern-
abstractions are applied. This function can be instantiated (implemented) by a
unitary matching algorithm as in [6,10] but also by an anti-pattern matching al-
gorithm [12] or it can be even more general [16]. We propose a generic confluence
proof where the way pattern-abstractions are applied is axiomatized. Intuitively,
the sufficient conditions to ensure confluence guarantee that the (matching) func-
tion is stable by substitution and by reduction.

We apply our approach to several classical pattern calculi, namely the λ-
calculus with patterns, the pure pattern calculus and the ρ-calculus. For all
these calculi, we give the encodings in the general framework and we obtain
proofs of confluence. This approach does not provide confluence proofs for free
but it establishes a proof methodology and isolates the key points that make
the calculi confluent. It can also point out some matching algorithms that al-
though natural at the first sight can lead to non-confluent reductions in the
corresponding calculus.

Outline of the paper. In Section 2 we give the syntax and semantics of the dy-
namic pattern λ-calculus. The hypotheses under which the calculus is confluent
and the main theorems are stated in Section 3. A non-confluent calculus is given
at the end of this section. In Section 4 we give the encoding of different pattern-
calculi and the corresponding confluence proofs. Section 5 concludes and gives
some perspectives to this work.
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A, B ::= x (Variable)
| c (Constant)
| λθA.B (Abstraction)
| A B (Application)

Fig. 1. Syntax of the (core) dynamic pattern λ-calculus

2 The Dynamic Pattern λ-Calculus

In this section, we first define the syntax and the operational semantics of the core
dynamic pattern λ-calculus. We then give the general definition of the dynamic
pattern λ-calculus.

2.1 Syntax

The syntax of the core dynamic pattern λ-calculus is defined in Figure 1. It con-
sists of variables (denoted by x, y, z, . . .), constants (denoted a, b, c, d, e, f, . . .),
abstractions and applications. In an abstraction of the form λθA.B we call the
term A the pattern and the term B the body. The set θ is a subset of the set of
variables of A and represents the set of variables bound by the abstraction. This
set is often omitted when it is exactly the set of free variables of the pattern. We
sometimes use an algebraic notation f(A1, . . . , An) for the term ((f A1) . . .)An).

Comparing to the λ-calculus we abstract not only on variables but on general
terms and the set of variables bound by an abstraction is not necessarily the same
as the set of (free) variables of the corresponding pattern. We say thus that the
patterns are dynamic since they can be instantiated and possibly reduced.

Definition 1 (Free and bound variables). The set of free and bound vari-
ables of a term A, denoted fv(A) and bv(A), are defined inductively by:

fv(c) � ∅ bv(c) � ∅ fv(x) � {x} bv(x) � ∅
fv(AB) � fv(A) ∪ fv(B) fv(λθA.B) � (fv(A) ∪ fv(B))\θ
bv(AB) � bv(A) ∪ bv(B) bv(λθA.B) � bv(A) ∪ bv(B) ∪ θ

When the set of free variables of a term is empty we say that the term is closed.
Otherwise, it is open.

In what follows we work modulo α-conversion, that is two terms that are
α-convertible are not distinguishable. Equality modulo α-equivalence is denoted
here by ≡. We adopt Barendregt’s hygiene-convention [3], i.e. free and bound
variables have different names.

A substitution is a partial function from variables to terms (we use post-fix no-
tation for substitution application). We denote by σ = {x1 ← A1, . . . , xn ← An}
the substitution that maps each variable xi to a term Ai. The set {x1, . . . , xn}
is called the domain of σ and is denoted by Dom(σ). The range of a substitution
σ, denoted by Ran(σ), is the union of the sets fv(xσ) where x ∈ Dom(σ). The
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composition of two substitutions σ and τ is denoted σ ◦ τ and defined as usually,
that is x(σ◦τ) = (xτ)σ. We denote by id the empty substitution. The restriction
of (the domain of) a substitution σ to a set of variables θ is denoted by σ|θ.

Definition 2 (Substitution). The application of a substitution σ to a term A
is inductively defined by

xσ � A if σ = {. . . , x← A, . . .}
yσ � y if y �∈ Dom(σ)
(λθA1.A2)σ � λθ(A1σ).(A2σ)
(A1A2)σ � (A1σ)(A2σ)

In the abstraction case, we take the usual precautions to avoid variable captures.

2.2 Operational Semantics

The operational semantics of the core dynamic pattern λ-calculus is given by
a single reduction rule that defines the way pattern-abstractions are applied.
This rule, given in Figure 2, is parameterized by a partial function, denoted
Sol(A ≺≺θ B), that takes as parameters two terms A and B and a set θ of
variables and returns a substitution.

In most of the cases this function corresponds to a pattern-matching algorithm
but it can be even more general [16,12].

Example 1 (Syntactic matching). We consider matching problems of the form
A%? B and conjunctions of such problems built with the (associative, idempo-
tent and with neutral element) operator ∧ . The symbol F represents a matching
problem without solution. The following set of terminating and confluent rules
can be used to solve a (non-linear) syntactic matching problem:
A%? A ∧ M → M
f(A1, . . . , An)%? f(A′

1, . . . , A
′
n) ∧ M → ∧n

i=1(Ai %? A′
i) ∧ M

f(A1, . . . , An)%? g(A′
1, . . . , A

′
m) ∧ M → F f �= g

f(A1, . . . , An)%? x ∧ M → F
(x%? A) ∧ (x%? A′) ∧ M → F A �= A′

We can define Sol(A ≺≺θ B) as the function that normalizes the matching
problem A %? B w.r.t. the above rewrite rules and according to the obtained
result returns:
– nothing (i.e. is not defined) if fv(A) �= θ or if the result is F,
– the substitution {xi ← Ai}i∈I if the result is of the form

∧
i∈I �=∅ xi %? Ai,

– id, if the result is empty.

In Section 3.2 we analyze the confluence of the relation induced by this rule
and more precisely of its compatible [3] and transitive closure.

Definition 3 (Compatible relation). A relation �→R on the set of terms of
the core dynamic pattern λ-calculus is said to be compatible if for all terms A,
B and C s.t. A �→R B we have AC �→R BC, λθA.C �→R λθB.C, CA �→R
CB and λθC.A �→R λθC.B.
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(β)
(λθA.B)C → Bσ

where σ = Sol(A ≺≺θ C)

Fig. 2. Operational semantics of the core dynamic pattern λ-calculus

Different instances of the core dynamic pattern λ-calculus are obtained when we
give concrete definitions to Sol. For example, the λ-calculus can be seen as the
core dynamic pattern λ-calculus such that

σ = Sol(A ≺≺θ C) iff A is a variable x, θ = {x} and Aσ ≡ C

Example 2 (Case branchings). Consider a pattern-based calculus with a case
construct denoted using | (a.k.a. a match operator as in functional programming
languages). It can be encoded in the core dynamic pattern λ-calculus as follows:

(A1 �→ B1| . . . |An �→ Bn)C �
(
λx(A1 ↪→ B1/ . . . /An ↪→ Bn).x

)
C

where x is a fresh variable, the symbols ↪→ and / are constants of the core
dynamic pattern λ-calculus (infix notation) and the function Sol may be defined
by

Sol
(
(A1 ↪→ B1/ . . . /An ↪→ Bn) ≺≺x Aiσ

)
� {x← Biσ}

Some pattern-calculi come with additional features and cannot be expressed as
instances of the core dynamic pattern λ-calculus. For example, the pure pattern
calculus [10] and some versions of the rewriting calculus [7] reduce the application
of a pattern-abstraction to a special term when the corresponding matching
problem has not and will never have a solution. In the rewriting calculus [7]
there is also a construction that aggregates terms and then distributes them
over applications. These calculi as well as their encodings are briefly presented
in Section 4.

We define thus the dynamic pattern λ-calculus as the core dynamic pattern
λ-calculus extended by a set of rewrite rules. As for Sol this set, denoted ξ, is
not made precise and can be considered as a parameter of the calculus. It can
include for example some rules to reduce particular pattern-abstractions to a
special constant representing a definitive matching failure or some extra rules
describing the distributivity of certain symbols (like the structure operator of
the ρ-calculus) over the applications.

In what follows, �→β denotes the compatible closure of the relation induced
by the rule β and �→→β denotes the transitive closure of �→β . Similarly, we will
denote by �→β∪ξ the compatible closure of the relation induced by the rules β
and ξ. �→→β∪ξ denotes the transitive closure of �→β∪ξ.

3 The Confluence of the Dynamic Pattern λ-Calculus

The calculus is not confluent when no restrictions are imposed on the func-
tion Sol. This is for example the case when we consider the decomposition of
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applications containing free active variables (the term (λxx a.x) ((λyy.y) a) can
be reduced either to λyy.y or to (λxx a.x) a which are not joinable) or when
we deal with non-linear patterns (see Section 3.3). Nevertheless, the confluence
is recovered for some specific definitions of Sol like the one used in Section 2.2
when defining the λ-calculus as a core dynamic pattern λ-calculus.

In this section we give some sufficient conditions that guarantee the confluence
of the core dynamic pattern λ-calculus. Intuitively, the hypotheses introduced
in Section 3.1 under which we prove the confluence of the calculus guarantee
the coherence between Sol and the underlying relation of the calculus. The
obtained results can then be generalized for a dynamic pattern λ-calculus with
an extended set of rules ξ that satisfies some classical coherence conditions.

We use here a proof method introduced by Martin-Löf that consists in defining
a so-called parallel reduction that, intuitively, can reduce all the redexes initially
present in the term and that is strongly confluent (even if the one-step reduction
is not) under some hypotheses.

Definition 4 (Parallel reduction). The parallel reduction is inductively de-
fined on the set of terms as follows:

A−→� A

A−→� A′ B−→� B′

AB−→� A′B′
A−→� A′ B−→� B′

λθA.B−→� λθA
′.B′

A−→� A′ B−→� B′ C−→� C′

(λθA.B)C−→� B′σ′
if σ′ ∈ Sol(A′ ≺≺θ C′)

Note that the parallel reduction is compatible. Moreover, we should note that
this definition of parallel reduction does not coincide with the classical notion
of developments. For example, if we use a Sol function that computes the sub-
stitution solving the matching between its two arguments (for example, like in
Example 1 but without using the last rule) then we have

f x−→� f x x−→� x (λy.f y) a−→� f a

(λ(f x).x)((λy.f y) a)−→� a

The substitution {x← a} solves the syntactic matching between the terms f x
and f a and thus, even if the initial term contains no head redex it can still be
reduced using the parallel reduction.

We extend the definition of parallel reduction to substitutions having the same
domain by setting σ−→� σ′ if for all x in the domain of σ, we have xσ−→� xσ′.

3.1 Stability of Sol

Preservation of free variables. First of all, when defining a higher-order calculus
it is natural to ask that the set of free variables is preserved by reduction (some
free variables can be lost but no free variables can appear during reduction). For
example, the free variables of the term (λθA.B)C should be include the ones of
the term Bσ with σ = Sol(A ≺≺θ C). Thus, the substitution σ should instantiate
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∀A,C, A′, C′

H0 : Sol(A ≺≺θ C) = σ =⇒
{

Dom(σ) = θ

Ran(σ) ⊆ fv(C) ∪ (fv(A)\θ)

H1 : Sol(A ≺≺θ C) = σ =⇒
{

∀τ, Var(τ ) ∩ θ = ∅,

Sol(Aτ ≺≺θ Cτ ) = (τ ◦ σ)|θ

H2 :

{
Sol(A ≺≺θ C) = σ

A−→� A′ C−→� C′ =⇒
{

Sol(A′ ≺≺ C′) = σ′

σ−→� σ′

Fig. 3. Conditions to ensure confluence of the core dynamic pattern λ-calculus

all the variables bound (by the abstraction) in B, that is, all the variables in θ.
Moreover, the free variables of σ should already be present in C or free in A.
These conditions are enforced by the hypothesis H0 in Figure 3.

If we think of Sol as a unitary matching algorithm, the examples that do not
verify H0 are often peculiar algorithms (for example the function that returns the
substitution {x← y} for any problem). When considering non-unitary matching
(not handled in this paper), there are several examples that do not verify H0.
For instance, the algorithms solving higher-order matching problems or matching
problems in non-regular theories (e.g., such that x× 0 = 0) do not verify H0.

Stability by substitution. In the core dynamic pattern λ-calculus, when a pattern-
abstraction is applied the argument may be open. One can wait for the argument
to be instantiated and only then compute the corresponding substitution (if it
exists) and reduce the application. On the other hand, one might not want to
sequentialize the reduction but to perform the reduction as soon as possible.
Nevertheless, the same result should be obtained for both reduction strategies.
This is enforced by the hypothesis H1 in Figure 3.

If we consider that Sol performs a naive matching algorithm that does not
take into account the variables in θ and such that Sol(a ≺≺∅ b) has no solution
and Sol(x ≺≺∅ y) = {x← y}, then the hypothesis H1 is clearly not verified (take
τ = {x← a, y ← b}).

Stability by reduction. When applying a pattern-abstraction, the argument may
also be not fully reduced. Once again, if Sol succeeds and produces a substitution
σ then subsequent reductions should not lead to a definitive failure for Sol.
Moreover, the substitution that is eventually obtained should be derivable from
σ. This is formally defined in hypothesis H2.

The function Sol proposed in Example 1 does not satisfy this hypothesis.
If we take I � (λy.y) then Sol(f(x, x) ≺≺x f(I I, I I)) = {x ← I I} but
Sol(f(x, x) ≺≺x f(I I, I)) has no solution. Similarly, this hypothesis is not sat-
isfied by a matching algorithm that allows the decomposition of applications
containing a so-called free active variable (i.e. a variable in applicative position).
For example, we can have Sol(xa ≺≺x (λy.y)a) = {x← λy.y} but Sol(xa ≺≺x a)
has no solution for any classical (first-order) matching algorithm.
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3.2 Sufficient Conditions for the Confluence

In this section, we first prove the confluence of the core dynamic pattern λ-
calculus under the hypotheses H0,H1,H2. The proof uses the standard tech-
niques of parallel reduction first introduced by Tait and Martin-Löf. We first
show that the reflexive and transitive closure of the parallel and one-step reduc-
tions are the same. Then we show that the parallel reduction has the diamond
property and we deduce the confluence of the one-step reduction.

The three hypotheses given in the previous section are used for showing the
strong confluence of the parallel reduction and in particular the Lemma 2. On
the other hand, we can show that the reflexive and transitive closure of −→� is
equal to �→→β independently of the properties of Sol.
Lemma 1. The following inclusions hold. �→β ⊆ −→� ⊆ �→→β .

The next fundamental lemma and the diamond property of the parallel reduction
are obtained by indcution and are used for the confluence theorem.
Lemma 2 (Fundamental lemma). For all terms C and C′ and for all sub-
stitutions σ and σ′,such that C−→� C′ and σ−→� σ′ we have Cσ−→� C′σ′.

Lemma 3 (Diamond property for −→� ). The relation −→� satisfies the di-
amond property that is, for all terms A,B and C if A−→� B and A−→� C then
there exists a term D such that B−→� D and C−→� D.

Theorem 1 (Confluence). The core dynamic pattern λ-calculus with Sol sat-
isfying H0, H1 and H2 is confluent.

As we have already said most of the pattern-calculi extend the basic β rule (or
its equivalent) by a set of rules. We will state here the conditions that should
be imposed in order to prove the confluence of the dynamic pattern λ-calculus,
conditions that turn out to be satisfied by most of the different calculi that can
be expressed as instances of the dynamic pattern λ-calculus.

We show in this section that the confluence of extensions of the core dy-
namic pattern λ-calculus with an appropriate set of rules is easy to deduce using
Yokouchi-Hikita’s lemma [25] (see also [8]).

Lemma 4 (Yokouchi-Hikita). Let R and S be two relations defined on the
same set T of terms such that
– R is strongly normalizing and confluent,
– S has the diamond property,
– for all A,B and C in T such that A �→R B and A �→S C then there exists
D such that B �→R∗SR∗ D and C �→R∗ D (Yokouchi-Hikita’s diagram).

Then the relation R∗SR∗ is confluent.

Theorem 2. The dynamic pattern λ-calculus is confluent when
– Sol satisfies H0,H1,H2,
– the set ξ of reduction rules is strongly normalizing and confluent,
– the relations −→� and ξ satisfy Yokouchi-Hikita’s diagram.

Proof. Notice that �→→β∪ξ and �→→ξ −→� �→→ξ are equal (consequence of Lemma 1)
and apply Yokouchi-Hikita’s lemma with −→� and the relation induced by ξ. 	
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3.3 Encoding Klop’s Counter-Example Using Linear Patterns

The different results we give below may seem to be limited because the conditions
imposed on the matching algorithm are strong. Nevertheless, these conditions
are respected by most of the pattern-calculi we have explored and relaxing them
leads to classical counter-examples for the confluence.

For example, if the matching can be performed on active variables then non-
confluent reductions can be obtained in both the lambda-calculus with pat-
terns [24] and in the rewriting calculus [7]. Similarly, non-linear patterns lead to
non-confluent reductions that are variations of the Klop’s counter-example [13]
for higher-order systems dealing with non-linear matching. This is why in the
λ-calculus with patterns or in the ρ-calculus we only consider linear patterns
and in the pure pattern calculus matching against non-linear terms always fails.

When using dynamic patterns containing variables that are not bound in the
abstraction the confluence hypotheses should be carefully verified. More pre-
cisely, the behavior of non-linear rules can be encoded using linear and dynamic
patterns. Consequently, Klop’s counter-example can be encoded in the corre-
sponding calculus that is therefore non-confluent.

Proposition 1 (Non-confluence). The core dynamic pattern λ-calculus with
Sol such that for all terms A and B and for some constant d

Sol(A ≺≺∅ A) = id
Sol(x ≺≺x A) = {x← A} is not confluent.
Sol(d(x, y) ≺≺x,y d(A,B)) = {x← A, y ← B}

Proof. It is sufficient to remark that we can encode non-linear patterns using
dynamic linear patterns as follows:

λx(d xx).♣ � λx,y(d x y).(λ∅x.♣)y

where ♣ denotes an arbitrary term. Then we adapt the encoding of Klop’s
counter-example in the core dynamic pattern λ-calculus. 	


As a consequence we obtain that any pattern-calculus defined using a func-
tion Sol that satisfies the conditions in Proposition 1 is not confluent. This is
somewhat surprising since the last two computations are clearly satisfied by any
classical syntactic matching algorithm and the first one seems to be a reason-
able choice. On the other hand, ignoring the information given by the set θ of
bound variables when performing matching can lead to strange behaviors and
in particular it allows for an encoding of the equality of terms.

The conditions of Proposition 1 are not satisfied by the specific calculi con-
sidered in this paper. More precisely, Sol(A ≺≺∅ A) does not return the identity
for all terms but only for a subset that is defined either statically (syntactical
restrictions on patterns) like in the λ-calculus with patterns or the rewriting
calculus or dynamically (only a subset of terms can be matched) like in the pure
pattern calculus. In all these cases the matchable terms from the corresponding
subsets cannot be used to encode Klop’s counter-example.
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(βλP ) (λA.B)(Aσ) → Bσ

Fig. 4. Operational semantics of the λ-calculus with patterns

4 Instantiations of the Dynamic Pattern λ-Calculus

In this section, we give some instantiations of the dynamic pattern λ-calculus.
For the sake of simplicity, we only give the key points for each of the pattern
based calculi. All these calculi have been proved confluent under appropriate
conditions; we give here confluence proofs based on these conditions and using
the general confluence proof for the dynamic pattern λ-calculus. This latter ap-
proach does not provide confluence proofs for free but gives a proof methodology
that focuses on the fundamental properties of the underlying matching that can
be thus seen as the key issue of pattern based calculi.

4.1 λ-Calculus with Patterns

The λ-calculus with patterns was introduced in [24] as an extension of the
λ-calculus with pattern-matching facilities. The set of terms is parameterized
by a set of patterns Φ on which we can abstract.

The syntax of the λ-calculus with patterns is thus the one of the core dynamic
pattern λ-calculus but where patterns are taken in a given set and abstractions
always bind all the (free) pattern variables. Its operational semantics is given by
the rule in Figure 4.

Instead of considering syntactical restrictions, we can equivalently consider
that a matching problem A ≺≺θ Aσ has a solution only when A ∈ Φ. The
λ-calculus with patterns can thus be seen as an instance of the core dynamic
pattern λ-calculus.

The calculus is not confluent (see [24] Ex. 4.18) in general but some restric-
tions can be imposed on the set of patterns to recover confluence. This restriction
is called the rigid pattern condition (RPC) and can be defined using the parallel
reduction of the calculus. The definition allows for patterns which are exten-
sionally but not intensionally rigid, such as Ω xy with Ω = (λx.xx) (λx.xx).
We choose a (less general) syntactical characterization [24] that excludes these
pathological cases.

Definition 5 (RPC). The set of terms satisfying RPC is the set of all terms
of the λ-calculus which
– are linear (each free variable occur at most once),
– are in normal form,
– have no active variables (i.e., no sub-terms of the form xA where x is free).

Note that reformulating H2 in the particular case of a Sol function that per-
forms matching on closed patterns leads to a condition close to the original RPC



88 H. Cirstea and G. Faure

(the parallel reduction used in the definition of RPC is slightly different). Nev-
ertheless, the hypothesis H2 allows the matching to be performed on patterns
that are not in normal form (or not reducible to themselves) while this is not
the case for the RPC.

Example 3. Pairs and projections can be encoded in the λ-calculus with patterns
by directly matching on the pair encoding.(

λ(λz.(z x) y).x
)(
λz.(z A)B

)
�→βλP

x{x← A, y ← B}
≡ A

Proposition 2. The λ-calculus with patterns is confluent if the patterns are
taken in the set defined by the RPC.

Proof. The hypotheses H0 and H1 follow immediately. To prove H2, we can re-
mark that if Pσ−→� B with P ∈ RPC then ∃B′, σ′ s.t. B′ ≡ Pσ′ with σ−→� σ′

This proves that a redex cannot overlap with P in Pσ if P ∈ RPC and thus that
the condition H2 is satisfied. We conclude the proof by applying Thm. 1. 	


4.2 Rewriting Calculus

The rewriting calculus was introduced in [6] to make explicit all the ingredients
of rewriting. There are several versions of the calculus but we focus here on
the ρ

�
-calculus [7] that uses a left-distributive structure operator and a special

constant representing matching failures.
Note that the syntax used here is slightly different from the original presen-

tations that introduce matching constraints. Nevertheless, the use of matching
constraints is crucial only when considering explicit matching and substitution
application. We also omit the type related aspects of this calculi and consider
a syntactic matching (in the original version, the reduction rules of ρ

�
-calculus

are parameterized by a matching theory T but the confluence is proved for the
syntactic version). The syntax of the ρ

�
-calculus is given in Figure 5.

The patterns are linear algebraic terms (i.e. terms constructed only with vari-
ables, constants and application). A structure is a collection of terms that can
be seen either as a set of rewrite rules or as a set of results. The symbol stk
can be considered as the special constant representing a redex whose underlying
matching problem is unsolvable.

We consider a superposition relation �' between (patterns and) terms whose
aim is to characterize a broad class of matching equations that have not and
will never have a solution (i.e. independently of subsequent instantiations and
reductions). Thus, if P �' A then ∀σ1, σ2, ∀A′, Aσ1 �→→A′ ⇒ Pσ2 �≡ A′. This
definition is clearly undecidable but syntactic characterizations can be given [7].

The ρ
�

-calculus handles uniformly matching failures and eliminates them
when they are not significant for the computation. The semantics of the
ρ

�
-calculus is given in Figure 5.
We can consider ( and stk as constants of the dynamic pattern λ-calculus and

thus we can see the syntax of the ρ
�

-calculus as an instance of the syntax of the
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Syntax of the ρ�-calculus

Patterns P ::= x | stk | c(P, . . . , P ) (variables occur only once in any P)

Terms A ::= c | stk | x | λP.A | A A | A � A

Semantics of the ρ�-calculus

(βρstk) (λP.A) B → Aσ with Pσ = B

(δ) (A � B) C → A C � B C
(stk) (λP.A) B → stk if P �� B
(stk) stk � A → A
(stk) A � stk → A
(stk) stk A → stk

Fig. 5. The ρ�-calculus

dynamic pattern λ-calculus. The rule (βρstk) can be considered as an instance of
the (β) rule of the dynamic pattern λ-calculus.

(βρ) (λP.A)B → Aσ if σ = Sol(P ≺≺ B)

where Sol(P ≺≺ B) has a solution only when P is a pattern. Since patterns are
linear algebraic terms then the Sol function can be implemented using first-order
linear matching à la Huet (see Example 1).

Proposition 3. The ρ
�

-calculus with linear algebraic patterns is confluent.

Proof. The patterns of the ρ
�

-calculus satisfy the RPC. The confluence of the
(βρstk) rule is thus obtained as in Prop. 2. The relation δ∪stk induces a terminat-
ing relation. It is also locally confluent (all critical pairs are joinable). Moreover,
the relations −→� βρstk

and (δ ∪ stk) satisfy the Yokouchi-Hikita’s diagram (easy
induction of the structure of terms). Thm. 2 concludes the proof. 	


4.3 Pure Pattern Calculus

In the λ-calculus, data structures such as pairs of lists can be encoded. Although
the λ-calculus supports some functions that act uniformly on data structures,
it cannot support operations that exploit characteristics common to all data
structures such as an update function that traverses any data structures to
update its atoms. In the pure pattern calculus [10] where any term can be a
pattern the focus is put on the dynamic matching of data structures.

The syntax of the pure pattern calculus is the same as the one of the dy-
namic pattern λ-calculus (except that the pure pattern calculus defines a single
constructor).

Pattern-abstractions are applied using a particular matching algorithm. Al-
though the original paper uses a single rule to describe application of pattern-
abstractions we present it here using two rules. First, a rule that is an instance of
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φ-data structures and φ-matchable forms

D ::= x (x ∈ φ) | c | D A

E ::= D | λθA.B

where A and B are arbitrary terms

Semantics of the pure pattern calculus

(βpc) (λθA.B)C → Bσ
if σ = Sol(A ≺≺θ C)

(βstk
pc ) (λθA.B)C → λx.x

if none = Sol(A ≺≺θ C)

Fig. 6. The pure pattern calculus

the (β) rule of the dynamic pattern λ-calculus. Secondly, a rule that reduces the
corresponding pattern-abstraction application to the identity (the motivation for
this second rule is given in [10]) when the pattern-matching does not succeed.

The matching algorithm of the pure pattern calculus is based on the notions
of φ-data structures (denoted D) and φ-matchable forms (denoted E) that are
given in Figure 6.

The operational semantics of the pure pattern calculus is given in Figure 6
where the partial function Sol is defined by the following equations that are
applied respecting the order below

Sol(x ≺≺θ A) = {x← A} if x ∈ θ
Sol(c ≺≺θ c) = id

Sol(A1A2 ≺≺θ B1B2) = Sol(A1 ≺≺θ B1) � Sol(A2 ≺≺θ B2)
if A1A2 is a θ-data structure
if B1B2 is a data structure

Sol(A1 ≺≺θ B1) = none
if A1 is a θ-matchable form
if B1 is a matchable form

Note that the union � is only defined for substitutions of disjoint domains
and that the union of none and σ is always none.

At first sight, the matching algorithm may seem surprising because one de-
composes application syntactically whereas it is a higher-order symbol. This is
sound because the decomposition is done only on data-structures, which consist
of head normal forms.

Example 4. [10] Define elim � λx.λy(xy).y to be the generic eliminator. For
example, suppose given two constants Cons and Nil representing list constructs.
We define the function singleton � λx.(Cons x Nil) and we check that

elim singleton ≡
(
λx.λy(xy).y

)(
λx.(Cons x Nil)

)
�→ρppc λ(Cons y Nil).y
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Proposition 4. The pure pattern calculus is confluent.

Proof. The hypothesis H0 is true. The hypotheses H1 and H2 are not surpris-
ingly intermediate results in [10]. In particular, Lemma 7 [10] states that the
function Sol is stable by substitution and Lemma 8 [10] proves that the function
Sol is stable by reduction (when it returns a substitution and when it returns
none). We use this property to prove that the relation (βstk

pc ) is locally confluent
(simple induction). It is trivially terminating, and thus confluent. The fact that
the relations−→� βpc and (βstk

pc ) verify Yokouchi-Hikita’s diagram is obtained again
by a simple induction. The only interesting case is for the term (λA0.A1)A2 but
it is easy to conclude using the stability by reduction of the function Sol. 	


5 Conclusions and Future Work

We propose here a different formulation for different pattern-based calculi and
we use the confluence properties of the general formalism to give alternative con-
fluence proofs for these calculi. The general confluence proof uses the standard
techniques of parallel reduction of Tait and Martin-Löf and Yokouchi-Hikita’s
lemma. The method proposed by M. Takahashi [20] gives in general more ele-
gant and shorter proofs by using the notion of developments. Reformulating the
hypotheses H0,H1 and H2 and adapting the proofs of this paper is easy but
given a pattern-calculus the reformulated hypotheses are often more difficult to
prove than for the original case.

Moreover, we show that the proof of confluence of the ρ-calculus is easy to
deduce from our general result as soon as the structure operator has no equa-
tional theory. Nevertheless, if one wants to switch to non-unitary matching (and
this is very useful is practice [23,22]) then the β rule should return a collec-
tion of results and the structure operator should be (at least) associative and
commutative. This extension is syntactically and semantically non-trivial and
opens new challenging problems. Nevertheless, we think that this work is a good
starting point for the study of the confluence properties of pattern-calculi with
non-unitary matching.

Acknowledgments. We would like to thank C. Kirchner for useful interactions
and comments on this work and D. Kesner for the many discussions we have
been having on pattern-calculi.
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2. Arbiser, A., Miquel, A., Ŕıos, A.: A lambda-calculus with constructors. In: Pfen-
ning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 181–196. Springer, Heidelberg (2006)

3. Barendregt, H.: The Lambda-Calculus, its syntax and semantics. Studies in Logic
and the Foundation of Mathematics. North Holland, 2nd edn. (1984)



92 H. Cirstea and G. Faure

4. Barthe, G., Cirstea, H., Kirchner, C., Liquori, L.: Pure Patterns Type Systems. In:
30th SIGPLAN-SIGACT Symposium on Principles of Programming Languages -
POPL 2003, New Orleans, USA, pp. 250–261. ACM, New York (2003)

5. Bertolissi, C., Kirchner, C.: The rewriting calculus as a combinatory reduction
system. In: Siedl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, Springer, Heidelberg
(2007)

6. Cirstea, H., Kirchner, C.: The rewriting calculus — Part I and II. Logic Journal of
the Interest Group in Pure. and Applied Logics 9, 427–498 (2001)

7. Cirstea, H., Liquori, L., Wack, B.: Rewriting calculus with fixpoints: Untyped and
first-order systems. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003.
LNCS, vol. 3085, pp. 147–161. Springer, Heidelberg (2004)
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Abstract. We give a simple and direct proof that super-consistency im-
plies cut elimination in deduction modulo. This proof can be seen as a
simplification of the proof that super-consistency implies proof normal-
ization. It also takes ideas from the semantic proofs of cut elimination
that proceed by proving the completeness of the cut free calculus. In par-
ticular, it gives a generalization, to all super-consistent theories, of the
notion of V-complex, introduced in the semantic cut elimination proofs
for simple type theory.

1 Introduction

Deduction modulo is an extension of predicate logic where some axioms may be
replaced by rewrite rules. For instance, the axiom x+ 0 = x may be replaced by
the rewrite rule x+ 0 −→ x and the axiom x ⊆ y ⇔ ∀z (z ∈ x⇒ z ∈ y) by the
rewrite rule x ⊆ y −→ ∀z (z ∈ x⇒ z ∈ y).

In the model theory of deduction modulo, it is important to distinguish the
fact that some propositions are computationally equivalent, i.e. congruent (e.g.
x ⊆ y and ∀z (z ∈ x ⇒ z ∈ y)), in which case they should have the same value
in a model, from the fact that they are provably equivalent, in which case they
may have different values. This has lead, in [4], to introduce a generalization of
Heyting algebras called truth values algebras and a notion of B-valued model,
where B is a truth values algebra. We have called super-consistent the theories
that have a B-valued model for all truth values algebras B and we have given
examples of consistent theories that are not super-consistent.

In deduction modulo, there are theories for which there exists proofs that do
not normalize. But, we have proved in [4] that all proofs normalize in all super-
consistent theories. This proof proceeds by observing that reducibility candidates
[8] can be structured in a truth values algebra and thus that super-consistent
theories have reducibility candidate valued models. Then, the existence of such
a model implies proof normalization [7] and hence cut elimination. As many

F. Baader (Ed.): RTA 2007, LNCS 4533, pp. 93–106, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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theories, in particular arithmetic and simple type theory, are super-consistent,
we get Gentzen’s and Girard’s theorems as corollaries.

This paper is an attempt to simplify this proof replacing the algebra of re-
ducibility candidates C by a simpler truth values algebra S. Reducibility candi-
dates are sets of proofs. We show that we can replace each proof of such a set
by its conclusion, obtaining this way sets of sequents, rather than sets of proofs,
for truth values.

Although the truth values of our model are sets of sequents, our cut elimina-
tion proof uses another truth values algebra whose elements are sets of contexts:
the algebra of contexts Ω, that happens to be a Heyting algebra. Besides an
S-valued model we build, for each super-consistent theory, an Ω-valued model
verifying some properties, but this requires to enlarge the domain of the model
using a technique of hybridization. The elements of such an hybrid model are
quite similar to the V-complexes used in the semantic proofs of cut elimination
for simple type theory [12,13,1,3,9]. Thus, we show that these proofs can be sim-
plified using an alternative notion of V-complex and also that the V-complexes
introduced for proving cut elimination of simple type theory can be used for
other theories as well. This hybridization technique gives a proof that uses ideas
taken from both methods used to prove cut elimination: normalization and com-
pleteness of the cut free calculus. From the first, come the ideas of truth values
algebra and neutral proofs and from the second the idea of building a model
such that sequents valid in this model have cut free proofs.

2 Super-Consistency

To keep the paper self contained, we recall in this section the definition of de-
duction modulo, truth values algebras, B-valued models and super-consistency.
A more detailed presentation can be found in [4].

2.1 Deduction Modulo

Deduction modulo [6,7] is an extension of predicate logic (either single-sorted or
many-sorted predicate logic) where a theory is defined by a set of axioms Γ and
a congruence ≡, itself defined by a confluent rewrite system rewriting terms to
terms and atomic propositions to propositions.

In this paper we consider natural deduction rules. These rules are modified
to take the congruence ≡ into account. For example, the elimination rule of the
implication is not formulated as usual

Γ ) A⇒ B Γ ) A
Γ ) B

but as
Γ ) C Γ ) A

C ≡ A⇒ B
Γ ) B

All the deduction rules are modified in a similar way, see, for instance, [7] for a
complete presentation.
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In deduction modulo, there are theories for which there exists proofs that do
not normalize. For instance, in the theory formed with the rewrite rule P −→
(P ⇒ Q), the proposition Q has a proof

axiom
P ) P ⇒ Q

axiom
P ) P ⇒-elim

P ) Q ⇒-intro) P ⇒ Q

axiom
P ) P ⇒ Q

axiom
P ) P ⇒-elim

P ) Q⇒-intro) P ⇒-elim) Q

that does not normalize. In some other theories, such as the theory formed with
the rewrite rule P −→ (Q⇒ P ), all proofs strongly normalize.

In deduction modulo, like in predicate logic, closed normal proofs always end
with an introduction rule. Thus, if a theory can be expressed in deduction modulo
with rewrite rules only, i.e. with no axioms, in such a way that proofs modulo
these rewrite rules strongly normalize, then the theory is consistent, it has the
disjunction property and the witness property, and various proof search methods
for this theory are complete.

Many theories can be expressed in deduction modulo with rewrite rules only,
in particular arithmetic and simple type theory, and the notion of cut of deduc-
tion modulo subsumes the notions of cut defined for each of these theories. For
instance, simple type theory can be defined as follows.

Definition 1 (Simple type theory [2,5,3]). The sorts are inductively defined
by

– ι and o are sorts,
– if T and U are sorts then T → U is a sort.

The language contains the constants ST,U,V of sort (T → U → V ) → (T →
U) → T → V , KT,U of sort T → U → T , *̇ of sort o and ⊥̇ of sort o, ⇒̇, ∧̇
and ∨̇ of sort o→ o→ o, ∀̇T and ∃̇T of sort (T → o)→ o, the function symbols
αT,U of rank 〈T → U, T, U〉 and the predicate symbol ε of rank 〈o〉.

The rules are

α(α(α(ST,U,V , x), y), z) −→ α(α(x, z), α(y, z))

α(α(KT,U , x), y) −→ x

ε(*̇) −→ *
ε(⊥̇) −→ ⊥

ε(α(α(⇒̇, x), y)) −→ ε(x) ⇒ ε(y)

ε(α(α(∧̇, x), y)) −→ ε(x) ∧ ε(y)
ε(α(α(∨̇, x), y)) −→ ε(x) ∨ ε(y)
ε(α(∀̇T , x)) −→ ∀y ε(α(x, y))

ε(α(∃̇T , x)) −→ ∃y ε(α(x, y))
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2.2 Truth Values Algebras

Definition 2 (Truth values algebra). Let B be a set, whose elements are
called truth values, B+ be a subset of B, whose elements are called positive
truth values, A and E be subsets of ℘(B), *̃ and ⊥̃ be elements of B, ⇒̃, ∧̃, and
∨̃ be functions from B×B to B, ∀̃ be a function from A to B and ∃̃ be a function
from E to B. The structure B = 〈B,B+,A, E , *̃, ⊥̃, ⇒̃, ∧̃, ∨̃, ∀̃, ∃̃〉 is said to be a
truth values algebra if the set B+ is closed by the intuitionistic deduction rules
i.e. if for all a, b, c in B, A in A and E in E,

1. if a ⇒̃ b ∈ B+ and a ∈ B+ then b ∈ B+,
2. a ⇒̃ b ⇒̃ a ∈ B+,
3. (a ⇒̃ b ⇒̃ c) ⇒̃ (a ⇒̃ b) ⇒̃ a ⇒̃ c ∈ B+,
4. *̃ ∈ B+,
5. ⊥̃ ⇒̃ a ∈ B+,
6. a ⇒̃ b ⇒̃ (a ∧̃ b) ∈ B+,
7. (a ∧̃ b) ⇒̃ a ∈ B+,
8. (a ∧̃ b) ⇒̃ b ∈ B+,
9. a ⇒̃ (a ∨̃ b) ∈ B+,

10. b ⇒̃ (a ∨̃ b) ∈ B+,
11. (a ∨̃ b) ⇒̃ (a ⇒̃ c) ⇒̃ (b ⇒̃ c) ⇒̃ c ∈ B+,
12. the set a ⇒̃ A = {a ⇒̃ e | e ∈ A} is in A and the set E ⇒̃ a = {e ⇒̃ a | e ∈

E} is in A,
13. if all elements of A are in B+ then ∀̃ A ∈ B+,
14. ∀̃ (a ⇒̃ A) ⇒̃ a ⇒̃ (∀̃ A) ∈ B+,
15. if a ∈ A, then (∀̃ A) ⇒̃ a ∈ B+,
16. if a ∈ E, then a ⇒̃ (∃̃ E) ∈ B+,
17. (∃̃ E) ⇒̃ ∀̃ (E ⇒̃ a) ⇒̃ a ∈ B+.

Proposition 1. Any Heyting algebra is a truth values algebra. The operations
*̃, ∧̃, ∀̃ are greatest lower bounds, the operations ⊥̃, ∨̃, ∃̃ are least upper bounds,
the operation ⇒̃ is the arrow of the Heyting algebra, and B+ = {*̃}.

Proof. See [4].

Definition 3 (Full). A truth values algebra is said to be full if A = E = ℘(B),
i.e. if ∀̃ A and ∃̃ A exist for all subsets A of B.

Definition 4 (Ordered truth values algebra). An ordered truth values al-
gebra is a truth values algebra together with a relation ' on B such that

– ' is an order relation, i.e. a reflexive, antisymmetric and transitive relation,
– B+ is upward closed,
– *̃ and ⊥̃ are maximal and minimal elements,
– ∧̃, ∨̃, ∀̃ and ∃̃ are monotone, ⇒̃ is left anti-monotone and right monotone.

Definition 5 (Complete ordered truth values algebra). A ordered truth
values algebra is said to be complete if every subset of B has a greatest lower
bound for '.
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2.3 Models

Definition 6 (B-structure). Let L = 〈fi, Pj〉 be a language in predicate logic
and B be a truth values algebra, a B-structure M = 〈M,B, f̂i, P̂j〉, for the lan-
guage L, is a structure such that f̂i is a function from Mn to M where n is the
arity of the symbol fi and P̂j is a function from Mn to B where n is the arity
of the symbol Pi.

This definition extends trivially to many-sorted languages.

Definition 7 (Denotation). Let B be a truth values algebra, M a B-structure
and φ an assignment. The denotation �A�φ of a proposition A in M is defined
as follows

– �x�φ = φ(x),
– �f(t1, ..., tn)�φ = f̂(�t1�φ, ..., �tn�φ),
– �P (t1, ..., tn)�φ = P̂ (�t1�φ, ..., �tn�φ),
– �*�φ = *̃,
– �⊥�φ = ⊥̃,
– �A⇒ B�φ = �A�φ ⇒̃ �B�φ,
– �A ∧B�φ = �A�φ ∧̃ �B�φ,
– �A ∨B�φ = �A�φ ∨̃ �B�φ,
– �∀x A�φ = ∀̃ {�A�φ+(d/x) | d ∈M},
– �∃x A�φ = ∃̃ {�A�φ+(d/x) | d ∈M}.

Notice that the denotation of a proposition containing quantifiers may be unde-
fined, but it is always defined if the truth values algebra is full.

Definition 8 (Denotation of a context and of a sequent). The denotation
�A1, ..., An�φ of a context A1, ..., An is that of the proposition A1 ∧ ... ∧ An.
The denotation �A1, ..., An ) B�φ of the sequent A1, ..., An ) B is that of the
proposition (A1 ∧ ... ∧An) ⇒ B.

Definition 9 (Model). A proposition A is said to be valid in a B-structureM,
and the B-structure M is said to be a model of A if for all assignments φ, �A�φ

is defined and is a positive truth value.
Consider a theory in deduction modulo defined by a set of axioms Γ and a

congruence ≡. The B-structure M is said to be a model of the theory Γ,≡ if all
axioms of Γ are valid in M and for all terms or propositions A and B such that
A ≡ B and assignments φ, �A�φ and �B�φ are defined and �A�φ = �B�φ.

Deduction modulo is sound and complete with respect to this notion of model.

Proposition 2 (Soundness and completeness). The proposition A is prov-
able in the theory formed with the axioms Γ and the congruence ≡ if and only if
it is valid in all the models of Γ,≡ where the truth values algebra is full, ordered
and complete.

Proof. See [4].
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2.4 Super-Consistency

Definition 10 (Super-consistent). A theory in deduction modulo formed with
the axioms Γ and the congruence ≡ is super-consistent if it has a B-valued model
for all full, ordered and complete truth values algebras B.

Proposition 3. Simple type theory is super-consistent.

Proof. Let B be a full truth values algebra. We build the model M as follows.
The domain Mι is any non empty set, for instance the singleton {0}, the domain
Mo is B and the domain MT→U is the set MMT

U of functions from MT to MU .
The interpretation of the symbols of the language is ŜT,U,V = a �→ (b �→ (c �→
a(c)(b(c)))), K̂T,U = a �→ (b �→ a), α̂(a, b) = a(b), ε̂(a) = a, ˆ̇* = *̃, ˆ̇⊥ = ⊥̃,
ˆ̇⇒ = ⇒̃, ˆ̇∧ = ∧̃, ˆ̇∨ = ∨̃, ˆ̇∀T = a �→ ∀̃(Range(a)), ˆ̇∃T = a �→ ∃̃(Range(a)) where
Range(a) is the range of the function a. The model M is a B-valued model of
simple type theory.

3 Cut Elimination

3.1 The Algebra of Sequents

Definition 11 (Neutral proof). A proof is said to be neutral if its last rule
is the axiom rule or an elimination rule, but not an introduction rule.

Definition 12 (A positive definition of cut free proofs). Cut free proofs
are defined inductively as follows:

– a proof that ends with the axiom rule is cut free,
– a proof that ends with an introduction rule and where the premises of the

last rule are proved with cut free proofs is cut free,
– a proof that ends with an elimination rule and where the major premise of

the last rule is proved with a neutral cut free proof and the other premises
with cut free proofs is cut free.

Definition 13 (The algebra of sequents)

– *̃ is the set of sequents Γ ) C that have a neutral cut free proof or such that
C ≡ *.

– ⊥̃ is the set of sequents Γ ) C that have a neutral cut free proof.
– a ∧̃ b is the set of sequents Γ ) C that have a neutral cut free proof or such

that C ≡ (A ∧B) with (Γ ) A) ∈ a and (Γ ) B) ∈ b.
– a ∨̃ b is the set of sequents Γ ) C that have a neutral cut free proof or such

that C ≡ (A ∨B) with (Γ ) A) ∈ a or (Γ ) B) ∈ b.
– a ⇒̃ b is the set of sequents Γ ) C that have a neutral cut free proof or such

that C ≡ (A⇒ B) and for all contexts Σ such that (Γ,Σ ) A) ∈ a, we have
(Γ,Σ ) B) ∈ b.

– ∀̃ S is the set of sequents Γ ) C that have a neutral cut free proof or such
that C ≡ (∀x A) and for every term t and every a in S, (Γ ) (t/x)A) ∈ a.
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– ∃̃ S is the set of sequents Γ ) C that have a neutral cut free proof or such
that C ≡ (∃x A) and for some term t and some a in S, (Γ ) (t/x)A) ∈ a.

Let S be the smallest set of sets of sequents closed by *̃, ⊥̃, ∧̃, ∨̃, ⇒̃, ∀̃, ∃̃
and by arbitrary intersections.

Proposition 4. The structure S = 〈S, S, ℘(S), ℘(S), *̃, ⊥̃, ⇒̃, ∧̃, ∨̃, ∀̃, ∃̃,⊆〉 is a
full, ordered and complete truth values algebra.

Proof. As all truth values are positive, the conditions of Definition 2 are ob-
viously met. Thus S is a truth values algebra. As the domains of ∀̃ and ∃̃ are
defined as ℘(S), this algebra is full. As it is closed by arbitrary intersections,
all subsets of S have a greatest lower bound, thus all subsets of S have a least
upper bound and the algebra is complete.

Remark. The algebra S is not a Heyting algebra. In particular *̃ ∧̃ *̃ and *̃ are
different: the first set contains the sequent ) * ∧ *, but not the second.

Proposition 5. For all elements a of S, contexts Γ , and propositions A and B

– (Γ,A ) A) ∈ a,
– if (Γ ) B) ∈ a then (Γ,A ) B) ∈ a,
– if (Γ ) A) ∈ a and B ≡ A then (Γ ) B) ∈ a,
– if (Γ ) A) ∈ a then Γ ) A has a cut free proof.

Proof. The first proposition is proved by noticing that the sequent Γ,A ) A
has a neutral cut free proof. The others are proved by simple inductions on the
construction of a.

Consider a super-consistent theory Γ,≡. As this theory is super-consistent, it
has an S-model M. In the rest of the paper, M refers to this fixed model whose
domain is written M .

3.2 The Algebra of Contexts

Definition 14 (Fiber). Let b be a set of sequents and A a proposition, we define
the fiber over A in b, b �A, as the set of contexts Γ such that (Γ ) A) ∈ b.

Definition 15 (Outer value [10,11]). Let A be a proposition, φ be an assign-
ment and σ a substitution, we define the set of contexts [A]σφ as the set �A�φ �σA
i.e. {Γ | (Γ ) σA) ∈ �A�φ}.

Proposition 6. For all contexts Γ , propositions A and B, substitutions σ, and
M-assignments φ

– (Γ, σA) ∈ [A]σφ,
– if Γ ∈ [B]σφ then (Γ,A) ∈ [B]σφ,
– if Γ ∈ [A]σφ and B ≡ A then Γ ∈ [B]σφ,
– if Γ ∈ [A]σφ then Γ ) σA has a cut free proof.

Proof. From Proposition 5.
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Definition 16 (The algebra of contexts). Let Ω be the smallest set of sets
of contexts containing all the [A]σφ for some proposition A, assignment φ, and
substitution σ and closed by arbitrary intersections.

Notice that an element c of Ω can always be written in the form

c =
⋂

i∈Λc

[Ai]σi

φi

Proposition 7. The set Ω ordered by inclusion is a complete Heyting algebra.

Proof. As Ω is ordered by inclusion, the greatest lower bound of a subset of Ω
is the intersection of all its elements. As Ω is closed by arbitrary intersections,
all its subsets have greatest lower bounds. Thus, all its subsets also have least
upper bounds.

The operations *̌, ∧̌ and ∀̌ are defined as nullary, binary and infinitary greatest
lower bounds and the operations ⊥̌, ∨̌ and ∃̌ are defined as nullary, binary and
infinitary least upper bounds. Finally, the arrow ⇒̌ of two elements a and b is
the least upper bound of all the c in Ω such that a ∩ c ≤ b

a ⇒̌ b = ∃̌ {c ∈ Ω | a ∩ c ≤ b}

Notice that the nullary least upper bound ⊥̌ is the intersection of all the elements
of Ω that contain the empty set, i.e. the intersection of all the elements of Ω.

The binary least upper bound, a ∨̌ b, of a and b is the intersection of all the
elements of Ω that contain a ∪ b. From Definition 16

a ∨̌ b =
⋂

(a∪b)⊆c

c =
⋂

(a∪b)⊆
�

[Ai]
σi
φi

(
⋂

[Ai]σi

φi
) =

⋂
(a∪b)⊆[A]σφ

[A]σφ

The infinitary least upper bound ∃̌ E of the elements of a set E is the intersection
of all the elements of Ω that contain the union of the elements of E. For the
same reason as above

∃̌ E =
⋂

(
�

E) ⊆ c

c =
⋂

(
�

E) ⊆ [A]σφ

[A]σφ

Finally, notice that Ω is a non trivial Heyting algebra, although the Heyting
algebra S/S+ is trivial because S+ = S.

The next proposition, the Key lemma of our proof, shows that the outer values
of compound propositions can be obtained from the outer values of their compo-
nents using the suitable operation of the Heyting algebra Ω. Notice that, unlike
most semantic cut elimination proofs, we directly prove equalities in this lemma,
and not just inclusions, although the cut elimination proof is not completed yet.

Proposition 8 (Key lemma). For all substitutions σ, assignments φ and
propositions A and B

– [*]σφ = *̌,
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– [⊥]σφ = ⊥̌,
– [A ∧B]σφ = [A]σφ ∧̌ [B]σφ,
– [A ∨B]σφ = [A]σφ ∨̌ [B]σφ,
– [A⇒ B]σφ = [A]σφ ⇒̌ [B]σφ,

– [∀xA]σφ = ∀̌ {[A]σ+(t/x)
φ+(d/x) | t ∈ T , d ∈M},

– [∃xA]σφ = ∃̌ {[A]σ+(t/x)
φ+(d/x) | t ∈ T , d ∈M}.

where T is the set of open terms in the language of this theory.

Proof. – By Definition 13, for any Γ , (Γ ) *) ∈ *̃. Thus [*]σφ = Ω = *̌.
– The set ⊥̌ is the intersection of all [C]τρ . In particular, ⊥̌ ⊆ [⊥]σφ. Conversely,

let Γ ∈ [⊥]σφ. Consider arbitrary C, ρ and τ . By Definition 13, Γ ) σ⊥ has
a neutral cut free proof. So does Γ ) τC and thus Γ ∈ [C]τρ . Hence Γ is an
element of all [C]τρ and therefore of their intersection ⊥̌.

– Let Γ ∈ [A]σφ ∧̌ [B]σφ = [A]σφ ∩ [B]σφ. We have Γ ∈ [A]σφ and Γ ∈ [B]σφ and
thus (Γ ) σA) ∈ �A�φ and (Γ ) σB) ∈ �B�φ. From Definition 13, we get
(Γ ) σ(A∧B)) ∈ �A ∧B�φ. Hence Γ ∈ [A∧B]σφ. Conversely, let Γ ∈ [A∧B]σφ,
we have (Γ ) σ(A ∧ B)) ∈ (�A�φ ∧̃ �B�φ). If Γ ) σ(A ∧ B) has a neutral
and cut free proof, then so do Γ ) σA and Γ ) σB. Thus Γ ∈ [A]σφ and
Γ ∈ [B]σφ, hence Γ ∈ [A]σφ ∩ [B]σφ = Γ ∈ [A]σφ ∧̌ [B]σφ. Otherwise we directly
have Γ ∈ [A]σφ and Γ ∈ [B]σφ and we conclude the same way.

– Let us first prove [A]σφ ∨̌ [B]σφ ⊆ [A∨B]σφ. It is sufficient to prove that [A∨B]σφ
is an upper bound of [A]σφ and [B]σφ. Let Γ ∈ [A]σφ. We have (Γ ) σA) ∈ �A�φ.
By Definition 13, (Γ ) σ(A ∨ B)) ∈ (�A�φ ∨̃ �B�φ) = �A ∨B�φ. Thus
Γ ∈ [A∨B]σφ. We prove, in a similar way, that if Γ ∈ [B]σφ then Γ ∈ [A∨B]σφ.
Conversely, let Γ ∈ [A ∨B]σφ. Let C, ρ and τ such that [A]σφ ∪ [B]σφ ⊆ [C]τρ .
We have (Γ ) σ(A ∨ B)) ∈ (�A�φ ∨̃ �B�φ). From Definition 13, there are
three cases to consider. First, if Γ ) σ(A ∨ B) has a neutral cut free proof.
As (Γ, σA) ∈ [A]σφ ⊆ [C]τρ, the sequent Γ, σA ) τC has a cut free proof by
Proposition 6. In a similar way, the sequent Γ, σB ) τC has a cut free proof.
Hence, we can apply the ∨-elim rule and obtain a neutral cut free proof of
Γ ) τC. Thus Γ ∈ [C]τρ . As Γ is an element of all such upper bounds, it is an
element of their intersection i.e. of [A]σφ ∨̌ [B]σφ. Second, if (Γ ) σA) ∈ �A�φ.
We have Γ ∈ [A]σφ ⊆ [C]τρ . Again, Γ is an element of their intersection. The
case (Γ ) σB) ∈ �B�φ is similar.

– Let us prove [A ⇒ B]σφ ⊆ [A]σφ ⇒̌ [B]σφ. This is equivalent to [A]σφ ∩ [A ⇒
B]σφ ⊆ [B]σφ. Suppose (Γ ) σA) ∈ �A�φ and (Γ ) σA⇒ σB) ∈ �A⇒ B�φ =
�A�φ⇒̃�B�φ. If Γ ) σA⇒ σB has a neutral cut free proof, so does Γ ) σB,
as Γ ) σA has a cut free proof. Thus Γ ∈ [B]σφ. Otherwise, considering an
empty context Σ in Definition 13, we have (Γ ) σA) ∈ �A�φ and thus we
get (Γ ) σB) ∈ �B�φ. Conversely let us prove [A]σφ ⇒̌ [B]σφ ⊆ [A⇒ B]σφ. We
have to prove that [A ⇒ B]σφ is an upper bound of the set of all the c ∈ Ω
such that c ∩ [A]σφ ⊆ [B]σφ. Let such a c, we have to prove c ⊆ [A⇒ B]σφ. As
noticed c has the form

⋂
[Ci]τi

ρi
. Let Γ ∈ c. We must show (Γ ) σA⇒ σB) ∈

�A⇒ B�φ = �A�φ⇒̃�B�φ. For this, let Σ such that (Γ,Σ ) σA) ∈ �A�φ. This
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is equivalent to Γ,Σ ∈ [A]σφ. By Proposition 6, we know that Γ,Σ ∈ [Ci]τi
ρi

.
Therefore it is an element of their intersection. Thus Γ,Σ ∈ [B]σφ. Finally
(Γ,Σ ) σB) ∈ �B�φ. Hence c ⊆ [A⇒ B]σφ.

– Let Γ ∈
⋂
{[A]σ+(t/x)

φ+(d/x), t ∈ T , d ∈ M}. Then we have for any t and any d,

(Γ ) (σ + (t/x))A) ∈ �A�φ+(d/x). Hence, (Γ ) σ∀xA) ∈ ∀̃{�A�φ+(d/x), d ∈
M} = �∀xA�φ. Conversely, let Γ ∈ [∀xA]σφ. Then (Γ ) σ∀xA) ∈ �∀xA�φ.
If Γ ) σ∀xA has a neutral cut free proof then so does the sequent Γ )
(σ+(t/x))A for any t and this sequent is an element of �A�φ+(d/x) for any d.

Hence Γ ∈ [A]σ+(t/x)
φ+(d/x) for any t, d. So, it is an element of their intersection.

Otherwise, by Definition 13, for all t and d we have (Γ ) (σ + (t/x))A) ∈
�A�φ+(d/x) thus Γ is an element of the intersection.

– We first prove that for any t, d, [∃xA]σφ is an upper bound of the set

{[A]σ+(t/x)
φ+(d/x) | t ∈ T , d ∈ M}. Consider some t, d and Γ ∈ [A]σ+(t/x)

φ+(d/x). We
have (Γ ) (σ + (t/x))A) ∈ �A�φ+(d/x). By Definition 13, (Γ ) σ∃xA) ∈
∃̃{�A�φ+(d/x), d ∈M}. Hence Γ ∈ [∃xA]σφ and for any t and d, [A]σ+(t/x)

φ+(d/x) ⊆
[∃xA]σφ. So ∃̌ {[A]σ+(t/x)

φ+(d/x) | t ∈ T , d ∈ M} ⊆ [∃xA]σφ. Conversely, let Γ ∈
[∃xA]σφ. Suppose Γ ) σ∃xA has a neutral cut free proof. Let u =

⋂
[Ci]τi

ρi

an upper bound of {[A]σ+(t/x)
φ+(d/x) | t ∈ T , d ∈ M}. We can choose u = [C]τρ ,

since we need the intersection of the upper bounds. Let φ′ = φ+ (d/x) and
σ′ = σ + (y/x) where y is a variable appearing neither in φ nor in σ (the
choice of d ∈M is immaterial). By hypothesis: [A]σ

′

φ′ ⊆ [C]τρ . By Proposition
6, σ′A ∈ [A]σ

′

φ′ . Hence σ′A ∈ [C]τρ . Thus the sequent (σ′A ) τC) ∈ �C�ρ has
a cut free proof by Proposition 6. Thus so does the sequent Γ ) τC. Hence
Γ ∈ [C]τρ. This is valid for any [C]τρ upper bound of {[A]σ+(t/x)

φ+(d/x) | t ∈ T , d ∈
M}. So, Γ is in their intersection, that is ∃̃{[A]σ+(t/x)

φ+(d/x), t ∈ T , d ∈ M} Oth-
erwise by Definition 13, Γ ) σ∃xA is such that for some term t and element
d, (Γ ) (σ + (t/x))A) ∈ �A�φ+(d/x). This shows that Γ ∈ [A]σ+(t/x)

φ+(d/x). Then

Γ ∈ ∃̃{[A]σ+(t/x)
φ+(d/x) | t ∈ T , d ∈M}.

Proposition 9. σΓ ∈ [Γ ]σφ

Proof. Let Γ = A1, ..., An. Recall that, by Definition 8 and Proposition 8, [Γ ]σφ =
[A1 ∧ ...∧An]σφ = [A1]σφ ∧̌ ... ∧̌ [An]σφ. Using Proposition 6, we have σΓ ∈ [A1]σφ ,
..., σΓ ∈ [An]σφ, thus σΓ ∈ ([A1]σφ ∧̌ ... ∧̌ [An]σφ).

3.3 Hybridization and Cut Elimination

A usual way to prove cut elimination would be to prove by induction over proof
structure that if the sequent Γ ) B is provable then for every substitution σ and
every valuation φ, [Γ ]σφ ⊆ [B]σφ. Then using the fact that Γ ∈ [Γ ]∅φ (Proposition
9) we can prove Γ ∈ [B]∅φ and conclude, with Proposition 6, that Γ ) B has a
cut free proof.
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We shall follow a slightly different way here and construct another model
D, built from M and Ω-valued, such that the denotation of a proposition A is
the value [A]σφ. Then the fact that if Γ ) B is provable then [Γ ]σφ ⊆ [B]σφ will
be just a consequence of the soundness theorem. The elements of the domain
of the model D are quite similar to the V-complexes used in the proofs of cut
elimination for simple type theory that proceed by proving the completeness of
the cut free calculus. So we give a generalization of the notion of V-complex
that can be used not only for simple type theory but also for all super-consistent
theories.

Consider a super-consistent theory and its model M defined in Section 3.

Definition 17 (The model D). The model D is an Ω-valued model with do-
main D = T ′ ×M where T ′ is the set of (classes modulo ≡ of) open terms of
the language of the theory and M the domain of the model M.

Let f be a function symbol of the language and f̂M its interpretation in the
model M, the interpretation f̂D of this symbol in the model D is the function
from Dn to D

〈t1, a1〉, ..., 〈tn, an〉 �→ 〈f(t1, ..., tn), f̂M(a1, ..., an)〉

Let P be a predicate symbol of the language and P̂M its interpretation in the
model M. The interpretation P̂D of this symbol in the model D is the function
from Dn to Ω

〈t1, a1〉, ..., 〈tn, an〉 �→ P̂M(a1, ..., an) � P (t1, ..., tn)

Let ψ be an assignment mapping variables to elements 〈t, d〉 of D. We write
ψ1 for the substitution mapping the variable x to a fixed representative of the
first component of ψx and ψ2 for the M-assignment mapping x to the second
component of ψx. Notice that, by Proposition 6, [A]ψ

1

ψ2 is independent of the
choice of the representatives in ψ1.

Proposition 10. For any term t and assignment ψ

�t�Dψ = 〈ψ1t, �t�Mψ2 〉

For any proposition A and assignment ψ

�A�Dψ = [A]ψ
1

ψ2

Proof. The first statement is proved by induction on the structure of t. The
second by induction over the structure of A. If A is atomic, the result follows
from the first statement, Definition 14 and Definition 17 and in all the other
cases, from Proposition 8 and the induction hypothesis.

Proposition 11 (D is a model of ≡). If A ≡ B, then �A�Dψ = �B�Dψ .

Proof. From Proposition 6, we have [A]ψ
1

ψ2 = [B]ψ
1

ψ2 , and, by Proposition 10, we
get �A�Dψ = �B�Dψ .
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Proposition 12 (Completeness of the cut free calculus). If the sequent
Γ ) B is valid in the model D, then it has a cut free proof.

Proof. Let Γ = A1, ..., An and φ be an arbitrary M-valuation. Let ψ be the
D-valuation mapping x to the pair 〈x, φ(x)〉. If the sequent Γ ) B is valid in D,
then the proposition (A1 ∧ ... ∧ An) ⇒ B is valid in D i.e. �(A1 ∧ ... ∧ An) ⇒
B�Dψ = *̌, i.e. �A1 ∧ ... ∧ An�Dψ ⊆ �B�Dψ . Using Proposition 10, [Γ ]ψ

1

ψ2 ⊆ [B]ψ
1

ψ2 .

Using Proposition 9, ψ1Γ ∈ [B]ψ
1

ψ2 , i.e. Γ ∈ [B]ψ
1

ψ2 . Using Proposition 6, Γ ) B
has a cut free proof.

Theorem 1 (Cut elimination). If the sequent Γ ) B is provable, then it has
a cut free proof.

Proof. From the soundness theorem (Proposition 2) and Proposition 1, if Γ ) B
is provable, then it is valid in all Heyting algebra-valued models of the congru-
ence, and in particular in the model D. Hence, by Proposition 12, it has a cut
free proof.

4 Application to Simple Type Theory

As a particular case, we get a cut elimination proof for simple type theory.
Let us detail the model constructions in this case. Based on the language

of simple type theory, we first build the truth values algebra of sequents S of
Definition 13. Then using the super-consistency of simple type theory, we build
the model M as in Proposition 3. In particular, we let Mι = {0}, Mo = S, and
MT→U = MMT

U . Then, we let DT = T ′
T ×MT , where T ′

T is the set of classes of
terms of sort T . In particular, we have Dι = T ′

ι × {0} and Do = T ′
o × S.

This construction is reminiscent of the definition of V-complexes, that are also
ordered pairs whose first component is a term. In particular, in the definition
of V-complexes of [12,13,1,3,9], we also take Cι = T ′

ι × {0} but Co = T ′
o ×

{false, true}. In the intuitionistic case [3], the set {false, true} is replaced by
a complete Heyting algebra.

The difference here is that instead of using the small algebra {false, true} or
a Heyting algebra, we use the larger truth values algebra S of sequents.

Another difference is that, in our definition, we first define completely the
hierarchy M and then perform the hybridization with the terms. Terms and
functions are more intricate in the definition of V-complexes as CT→U is defined
as a set of pairs formed with a term t of type T → U and a function f from CT

to CU such that f〈t′, f ′〉 is a pair whose first component is tt′. In our definition,
in contrast, DT→U is the set of pairs formed with a term t of type T → U and
an element of MT→U , i.e. a function from MT to MU , not from DT to DU .
When we apply a pair 〈t, f〉 of DT→U to a pair 〈t′, f ′〉 of DT , we just apply
component-wise t to t′ and f to f ′ and get the pair 〈tt′, ff ′〉. With the usual
V-complexes, the result of application is the pair f〈t′, f ′〉 whose first component
is indeed tt′, but whose second component depends on f , f ′, and also t′. This
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is indeed necessary since, in the algebra {false, true} or in a Heyting algebra,
* and * ∧ * have the same interpretation and thus in the usual V-complexes
models, the interpretation of * and * ∧ * have the same second component.
The only way to make the second component of P (*) and P (* ∧ *) different
(this is necessary, since they are not equivalent) is to make it depending on
the first component. In our truth values algebra, in contrast, * and * ∧ *
have different interpretations. Moreover, �P (*)�D = �P (*)�M � P (*) whereas
�P (* ∧ *)�D = �P (* ∧ *)�M � P (* ∧ *). This shows that P (*) ∈ �P (*)�D ,
from Definition 13 since P (*) ) P (*) has a neutral cut free proof. On the same
way, P (* ∧ *) ∈ �P (* ∧ *)�D for the same reason. But one does have neither
P (* ∧ *) ∈ �P (*)�D nor P (*) ∈ �P (* ∧ *)�D. Hence these truth values are
distinct and incomparable.

Thus the main difference between our hybrid model construction and that of
the V-complexes is that we have broken this dependency of the right component
of the pair obtained by applying 〈t, f〉 to 〈t′, f ′〉 with respect to t′ leading to a
simpler construction in two steps. The reason why we have been able to do so
is that starting with a larger algebra for Do, our semantic components are more
informative and thus are sufficient to define the interpretation of larger terms.

5 Conclusion

In this paper, we have simplified the notion of V-complex introduced for proving
cut elimination for simple type theory and shown that when we use truth values
algebras, this notion boils down to hybridization. Once simplified this way, it
can be generalized to all super-consistent theories. This allows to relate the nor-
malization proofs using reducibility candidates to the semantic cut elimination
proofs. The latter appear to be a simplification of the former, where each proof is
replaced by its conclusion. In the cut elimination proof, however, hybridization
has permitted to obtain the inclusion of the interpretation of Γ in that of B,
when the sequent Γ ) B is provable, as a corollary of the soundness theorem.
It remains to understand if such a construction can also be carried out for the
normalization proof.
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Bottom-Up Rewriting Is Inverse Recognizability
Preserving
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Abstract. For the whole class of linear term rewriting systems, we define bottom-
up rewriting which is a restriction of the usual notion of rewriting. We show that
bottom-up rewriting effectively inverse-preserves recognizability and analyze the
complexity of the underlying construction. The Bottom-Up class (BU) is, by de-
finition, the set of linear systems for which every derivation can be replaced by
a bottom-up derivation. Membership to BU turns out to be undecidable; we are
thus lead to define more restricted classes: the classes SBU(k), k ∈ N of Strongly
Bottom-Up(k) systems for which we show that membership is decidable. We de-
fine the class of Strongly Bottom-Up systems by SBU =

�
k∈N

SBU(k). We give
a polynomial sufficient condition for a system to be in SBU. The class SBU con-
tains (strictly) several classes of systems which were already known to inverse
preserve recognizability.

1 Introduction

An important concept in term rewriting is the notion of preservation of recognizabil-
ity through rewriting. Each identification of a more general class of systems preserving
recognizability, yields almost directly a new decidable call-by-need class [9], decidabil-
ity results for confluence, accessibility, joinability. Also, recently, this notion has been
used to prove termination of systems for which none of the already known termina-
tion techniques work [13]. Such a preservation property is also a tool for studying the
recognizable/rational subsets of various monoids which are defined by a presentation
〈X,R〉, where X is a finite alphabet andR a Thue system (see e.g. [17,18]).

Many such known classes have been defined by imposing syntactical restrictions on
the rewrite rules. For instance, in growing systems [14,19] variables at depth strictly
greater than 1 in the left-handside of a rule cannot appear in the corresponding right-
handside. Finite-path Overlapping systems [25] are also defined by syntactic restric-
tions on the system. Previous works on semi-Thue systems proving a recognizability
preservation property, were based on syntactic restrictions (see [2],[3], [1],[21],[23]).

Other works establish that some strategies i.e. restrictions on the derivations rather
than on the rules, ensure preservation of recognizability. Various such strategies were
studied in [11], [20],[24].

We rather follow here this second approach: we define a new rewriting strategy which
we call bottom-up rewriting for linear term rewriting systems. The bottom-up deriva-
tions are, intuitively, those derivations in which the rules are applied from the bottom of

F. Baader (Ed.): RTA 2007, LNCS 4533, pp. 107–121, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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the term towards the top (this set of derivations contains strictly the bottom-up deriva-
tions of [20] and the one-pass leaf-started derivations of [11]). An important feature of
this strategy, as opposed to the ones quoted above, is that it allows overlaps between
successive applications of rules.

We define bottom-up(k) derivations for k ∈ N (bu(k) derivations for short) where a
certain amount (limited by k) of top-down sequences of rules is allowed. Our main re-
sult is that bottom-up rewriting inverse-preserves recognizability (Theorem 2). We use a
simulation argument which reduces our statement to the preservation of recognizability
by ground systems (this preservation property is shown in [7]). Our proof is construc-
tive i.e gives an algorithm for computing an automaton recognizing the antecedents of
a recognizable set of terms. We sketch an estimation of the complexity of the algorithm
for k = 1.

We then define the class of Bottom-up systems (BU for short) consisting of the linear
systems for which, there exists some fixed k ≥ 0, such that every derivation between
two terms can be replaced by a derivation which is bu(k). We show that membership
to BU(k) is undecidable for k ≥ 1 even for semi-Thue systems. We thus define the re-
stricted class of strongly bottom-up systems for which we show decidable membership.
We finally give a polynomial sufficient condition for a system to be in SBU.

Note that the class SBU is rather large since it contains strictly all the classes of
semi-Thue systems quoted above (once translated as term rewriting systems where all
symbols have arity 0 or 1), the linear growing systems of [14] and the class of LFPO−1

(i.e. the linear systems which belong to the class FPO−1 defined in [25]).

2 Preliminaries

Words. We denote by A∗ the set of finite words over the alphabet A. The empty word
is denoted by ε. A word u is a prefix of a word v iff there exists some w ∈ A∗ such that
v = uw. We denote by u � v the fact that u is a prefix of v. We then note v\u := w.

Terms. We assume the reader familiar with terms. We call signature a set of symbols
with fixed arity. For every m ∈ N, Fm denotes the subset of symbols of arity m. As
usual, a tree-domain is a subset of N∗, which is downwards closed for prefix ordering
and left-brother ordering. Let us call P ′ ⊆ P a subdomain of P iff, P ′ is a domain
and, for every u ∈ P, i ∈ N (u · i ∈ P ′ & u · (i + 1) ∈ P ) ⇒ u · (i + 1) ∈ P ′.
A term on a signature F is a partial map t : N∗ → F whose domain is a tree-domain
and which respects the arities. The domain of t is also called its set of positions and
denoted by Pos(t). We write Pos+(t) for Pos(t) \ {ε}. If u, v ∈ Pos(t) and u � v,
we say that u is an ancestor of v in t. Given v ∈ Pos+(t), its father is the position
u such that v = uw and |w| = 1. Given a term t and u ∈ Pos(t) the subterm of t
at u is denoted by t/u and defined by Pos(t/u) = {w | uw ∈ Pos(t)} and ∀w ∈
Pos(t/u), t/u(w) = t(uw). We denote by T (F ,V) the set of first-order terms built
upon a signature F and a denumerable set of variables V . The set of variables of a term
t is denoted by Var(t). The set of variable positions (resp. non variable positions) of
a term t is denoted by PosV(t) (resp. PosV(t)). The depth of a term t is defined by:
dpt(t) := sup{|u| | u ∈ PosV(t)}. We denote by |t| := Card(Pos(t)) the size of a
term t. A term which does not contain twice the same variable is called linear. Given a
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linear term t ∈ T (F ,V), x ∈ Var(t), we shall denote by pos(t, x) the position of x in t.
A term containing no variable is called ground. The set of ground terms is abbreviated
to T (F) or T wheneverF is understood. Among all the variables, there is a special one
designated by �. A term containing exactly one occurrence of � is called a context. A
context is usually denoted as C[]. If u is the position of � in C[], C[t] denotes the term
C[] where t has been substituted at position u.

Term rewriting. A rewrite rule is a pair l → r of terms in T (F ,V) which satisfies
Var(r) ⊆ Var(l). We call l (resp. r) the left-handside (resp. right-handside) of the rule
(lhs and rhs for short). A rule is linear if both its left and right-handside are linear. A
rule is left-linear if its left-handside is linear.

A term rewriting system (system for short) is a pair (R,F) whereF is a signature and
R a set of rewrite rules built upon the signature F . When F is clear from the context or
contains exactly the symbols inR, we may omit F and write simplyR. We call size of
the set of rulesR the number ‖R‖ :=

∑
l→r∈R |l|+ |r|. Rewriting is defined as usual.

A system is linear (resp. left-linear) if each of its rules is linear (resp. left-linear). A
system R is growing [14] if every variable of a right-handside is at depth at most 1 in
the corresponding left-handside.

Automata. We shall consider exclusively bottom-up term (tree) automata [4] (which we
abbreviate to f.t.a ). An automaton A is given by a 4-tuple (F , Q,Qf , Γ ) where F is
the signature, Q the set of states, Qf the set of final states, Γ the set of transitions. The
size ofA is defined by: ‖A‖ := Card(Γ ) + Card(Q). The set of rules Γ can be viewed
as a rewriting system over the signature F ∪ Q. We then denote by →Γ or by →A
(resp. by →∗

Γ or by →∗
A) the one-step rewriting relation (resp. the rewriting relation)

generated by Γ . Given an automatonA, let L(A) be the set of terms accepted by A. A
set of terms T is recognizable if there exists a term automatonA such that T = L(A).
The following technical normal form for f.t.a will be useful in our proofs.

Definition 1. A n.f.t.a.A = (F , Q,Qf , Γ ) is called standard iff F0 ⊆ Q and
1- Every rule ofA has the form f(q1, . . . , qm)→ q with m ≥ 1, f ∈ Fm, qi, q ∈ Q
2- For every m ≥ 1, f ∈ Fm, q1, . . . , qm ∈ Q there exists a unique q ∈ Q such that
f(q1, . . . , qm)→A q.

Automata and rewriting Given a system R and a set of terms T , we define
(→∗

R)[T ] = {s ∈ T (F) | ∃t ∈ T, s→∗
R t} and

[T ](→∗
R) = {s ∈ T (F) | ∃t ∈ T, t→∗

R s}.
A system R is recognizability preserving (resp. inverse recognizability preserving) if
[T ](→∗

R) (resp. (→∗
R)[T ]) is recognizable for every recognizable T .

Lemma 1. Let A be a standard f.t.a over the signature F . Let t, t1, t2 ∈ T (F ∪Q).
If t→∗

A t1, t→∗
A t2 and Pos(t1) = Pos(t2), then t1 = t2.

Definition 2 (A-reduct). Let A be a standard f.t.a over the signature F . Let t ∈
T (F ∪Q) and let P be a subdomain of Pos(t). We define Red(t, P ) = t′ as the unique
element of T (F ∪Q) such that
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1- t→∗
A t′

2 -Pos(t′) = P

Lemma 2. Let A be a standard f.t.a over the signature F . Let t, t1, t2 ∈ T (F ∪Q).
If t→∗

A t1, t→∗
A t2 and Pos(t1) ⊆ Pos(t2), then t2 →∗

A t1.

3 Bottom-Up Rewriting

In order to define bottom-up rewriting, we need some marking tools. In the following
we assume that F is a signature. We shall illustrate many of our definitions with the
following system

Example 1. R1 = {f(x) → g(x), g(h(x)) → i(x), i(x) → a}

3.1 Marking

We mark the symbols of a term using natural integers (as done in [12] for example).

Definition 3. We define the (infinite) signature of marked symbols: FN := {f i | f ∈
F , i ∈ N}.
For every integer k ≥ 0 we note: F≤k := {f i | f ∈ F , 0 ≤ i ≤ k}. The operation m()
returns the mark of a marked symbol: m(f i) = i.

Definition 4. The terms in T (FN,V) are called marked terms.

The operation m() extends to marked terms: if t ∈ V ,m(t) = 0, otherwise, m(t) =
m(t(ε)). For every f ∈ F , we identify f0 and f ; it follows that F ⊂ FN, T (F) ⊂
T (FN) and T (F ,V) ⊂ T (FN,V).

Example 2. m(a2) = 2,m(i(a2)) = 0,m(h1(a)) = 1,m(h1(x)) = 1,m(x) = 0.

Definition 5. Given t ∈ T (FN,V) and i ∈ N, we define the marked term ti whose
marks are all equal to i (except at variables) by:

Pos(ti) := Pos(t), ti(u) = t(u)i if t(u) /∈ V , ti(u) = t(u) if t(u) ∈ V .

This marking extends to sets of terms S (Si := {ti | t ∈ S}) and substitutions σ
(σi : x �→ (xσ)i). We use the notation: mmax(t) := max{m(t/u) | u ∈ Pos(t)}. In
the sequel, given a term t ∈ T (F ,V), t will always refer to a term of T (FN,V) such
that t

0 = t. The same rule will apply to substitutions and contexts. Note that there are
several possible t for a single t.

Finite automata and marked terms. Given a finite tree-automatonA = (F , Q,Qf , Γ )
we extend it over the signature FN, by setting

ΓN := {(f j(qj1
1 , . . . , q

jm
m )→ qj) | (f(q1, . . . , qm → q) ∈ Γ, j, j1, . . . , jm ∈ N},

and AN := (FN, QN, QN

f , Γ
N). The binary relation →AN is an extension of →A to

T (FN)× T (FN). We will often note simply→A what should be denoted→AN .
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N acts on marked terms. We define a right-action- of the monoid (N,max, 0) over the
set FN which just consists in applying the operation max on every mark i.e for every
t̄ ∈ T (FN), n ∈ N,

Pos(t̄-n) := Pos(t̄), ∀u ∈ Pos(t̄),m((t̄-n)/u) := max(m(t̄/u), n), (t̄-n)0 = t̄0

Lemma 3. Let A be some finite tree automaton over F , s̄, t̄ ∈ T ((F ∪Q)N) and n ∈
N. If s̄→∗

A t̄ then (s̄- n) →∗
A (t̄- n).

Marked rewriting. We define here the rewrite relation ◦→ between marked terms.
Figure 1 illustrates this definition.

For every linear marked term t̄ ∈ T (FN,V) and variable x ∈ Var(t̄), we define:

M(t̄, x) := sup{m(t/w) | w < pos(t, x)} + 1. (1)

LetR be a left-linear system, s ∈ T (FN). Let us suppose that s ∈ T (FN) decomposes
as

s = C[lσ]v, with (l, r) ∈ R, (2)

for some marked context C[]v and substitution σ. We define a new marked substitution
σ (such that σ

0 = σ0) by: for every x ∈ Var(r),

xσ := (xσ)-M(C[l], x). (3)

We then write s ◦→ t where

s = C[lσ], t = C[rσ]. (4)

CC

l r

s t

v

[m(s/w)]

xσ

[k]
xσ

[0]

[max(k, M(C[l], x))]

Fig. 1. A marked rewriting step

More precisely, an ordered pair of marked terms (s, t) is linked by the relation ◦→
iff, there exists C[]v, (l, r), l, σ and σ fulfilling equations (2-4). A mark k will roughly
mean that there were k successive applications of rules, each one with a leaf of the
left-handside at a position strictly greater than a leaf of the previous right-handside.

The map s �→ s0 (from marked terms to unmarked terms) extends into a map from
marked derivations to unmarked derivations: every
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s0 = C0[l0σ0]v0 ◦→ C0[r0σ0]v0 = s1 ◦→ . . . ◦→ Cn−1[rn−1σn−1]vn−1 = sn (5)

is mapped to the derivation

s0 = C0[l0σ0]v0 → C0[r0σ0]v0 = s1 → . . .→ Cn−1[rn−1σn−1]vn−1 = sn. (6)

The context Ci, the rule (li, ri) and the substitution σi completely determines si+1.
Thus, for every fixed pair (s0, s0), this map is a bijection from the set of derivations (5)
starting from s0, to the set of derivations (6) starting from s0.

Example 3. With the systemR1 of Example 1 we get the following marked derivation:

f(h(f(h(a)))) ◦→ f(h(g(h1(a1)))) ◦→ f(h(i(a2))) ◦→ f(h(a) ◦→
g(h1(a1)) ◦→ i(a2) ◦→ a

From now on, each time we deal with a derivation s→∗ t between two terms s, t ∈
T (F ,V), we may implicitly decompose it as (6) where n is the length of the derivation,
s = s0 and t = sn.

3.2 Bottom-Up Derivations

Definition 6. The marked derivation (5) is weakly bottom-up if, for every 0 ≤ j < n,
lj /∈ V ⇒ m(lj) = 0, and lj ∈ V ⇒ sup{m(sj/u) | u < vj} = 0.

Definition 7. The derivation (6) is weakly bottom-up if the corresponding marked
derivation (5) starting on the same term s = s is weakly bottom-up (following the
above definition).

v0 v4

v5

v6

v2

v1

v3

l0

l1
l2

l3

l4

l5

l6
r1

r0
r2

r3

r4
r6

r5

Fig. 2. A wbu-derivation

We shall abbreviate “weakly bottom-up” to wbu.

Lemma 4. Let R be a linear system. If s →∗
R t then there exists a wbu-derivation

between s and t.

The linear restriction cannot be relaxed: let R = {f(x) → g(x, x), a → b}; we have
f(a) → g(a, a)→ g(b, a) but no wbu-derivation between f(a) and g(b, a).
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Definition 8. A marked term s is called m-increasing iff, for every u, v ∈ Pos(s), u �
v ⇒ m(s/u) ≤ m(s/v).

Intuitively, in an m-increasing term, deeper positions carry the same or higher marks.

Lemma 5. Let s ◦→∗ t be a marked wbu-derivation between s, t ∈ T (FN). If s is
m-increasing, then t is m-increasing too.

We classify the derivations according to the maximal value of the marks. We abbreviate
“bottom-up” as bu.

Definition 9. A derivation is bu(k) (resp. bu−(k)) if it is wbu and, in the corresponding
marked derivation ∀i, 0 ≤ i ≤ n, mmax(si) ≤ k (resp. ∀i, 0 ≤ i < n, mmax(li) < k).

Notation s k◦→∗
R t means that there exists a wbu marked derivation from s to t where

all the marks belong to [0, k].
Notation s k→∗

R t means that there exists a bu(k) derivation from s to t.

Example 4. For the systemR0 = {f(f(x)) → f(x)}with the signatureF={a(0), f(1)},
although we may get a bu(k) derivation for a term of the form f(. . . f(a) . . .) with k+1
f symbols: f(f(f(f(a)))) ◦→ f(f1(f1(a1))) ◦→ f(f2(a2)) ◦→ f(a3)
we can always achieve a bu−(1) derivation:
f(f(f(f(a)))) ◦→ f(f(f(a1))) ◦→ f(f(a1)) ◦→ f(a1)

3.3 Bottom-Up Systems

We introduce here a hierarchy of classes of rewriting systems, based on their ability to
meet the bottom-up restriction over derivations.

Definition 10. Let P be some property of derivations. A system (R,F) is called P if
∀s, t ∈ T (F) such that s→∗

R t there exists a P -derivation from s to t.

We denote by BU(k) the class of BU(k) systems, by BU−(k) the class of BU−(k)
systems. One can check that, for every k > 0,BU(k−1) � BU−(k) � BU(k). Finally,
the class of bottom-up systems, denoted BU, is defined by: BU =

⋃
k∈N

BU(k).

Example 5. The systemR0 = {f(f(x)) → f(x)} ∈ BU−(1) andR0 is not growing.
The systemR1 of Example 1 belongs to BU−(2) andR1 is not growing.
The systemR2 = {f(x) → g(x), h(g(a)) → a} is growing and belongs to BU−(1).
The systemR3 = {f(x) → g(x), g(h(x)) → a} is growing and belongs to BU(1).

4 Bottom-Up Rewriting Is Inverse Recognizability Preserving

Let us recall the following classical result about ground rewriting systems

Theorem 1 ([7,6]). Every ground system is inverse-recognizability preserving.

The main theorem of this section (and of the paper) is the following extension of The-
orem 1 to bu(k) derivations of linear rewriting systems

Theorem 2. LetR be some linear rewriting system over the signatureF , let T be some
recognizable subset of T (F) and let k ≥ 0. Then, the set ( k→∗

R)[T ] is recognizable
too.
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4.1 Construction

In order to prove Theorem 2 we are to introduce some technical definitions, and to prove
some technical lemmas. Let us fix, from now on and until the end of the subsection, a
linear system (R,F), a language T ⊆ T (F) recognized by a finite automaton over the
extended signature F ∪{�},A = (F ∪{�}, Q,Qf , Γ ) and an integer k ≥ 0. In order
to make the proofs easier, we assume in the first step of this subsection that:

∀l → r ∈ R, l /∈ V , and A is standard. (7)

Let us define the integer d := max{dpt(l) | l → r ∈ R}. We introduce a ground
system S which will be enough, together with A, for describing the set of terms which
rewrite in L(A).

Definition 11. We define S as the ground rewriting system over T ((F ∪ Q)≤k) con-
sisting of all the rules of the form: lτ → rτ where l → r is a rule ofR

m(l) = 0 (8)

and τ , τ : V → T ((F ∪Q)≤k) are marked substitutions such that, ∀x ∈ Var(l)

xτ = (xτ )-M(l, x), dpt(xτ̄ ) ≤ k · d. (9)

Lemma 6 (lifting S ∪ A toR).
Let s, s′, t ∈ T ((F ∪Q)≤k).

If s′ →∗
A s and s→∗

S∪A t then, there exists a term t̄′ ∈ T ((F ∪Q)≤k) such that
s′ k◦→∗

R t′ and t′ →∗
A t̄.

∗

S ∪ A

∗

∗ ∗ ∗ ∗

S ∪ A

∗

Lifting S ∪ A Projecting R

s

t
′

t s′

t

t
′

A AA A

◦s′ ◦
R R

∗
s

k k

Fig. 3. Lemma 6 and 8

Proof. 1- Let us prove that the lemma holds for s →S∪A t. Under the assumption that
s′ →∗

A s→A t, we can just choose t
′ = s′ and obtain the conclusion.

Suppose now that s→S t. This means that

s = C[lτ ], t = C[rτ ]

for some rule l → r ∈ R, marked context C, and marked substitutions τ , τ , satisfying
(8-9). Since s′ →∗

A s, we must have s′ = C[lτ ′] where, for every x ∈ Var(l), xτ ′ →∗
A

xτ . Let us set
xτ

′ := xτ ′ -M(l, x), t
′ := C[rτ ′].
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The relation s′ ◦→R t
′

holds (by definition of ◦→) and this one-step derivation is
wbu (by condition (8)). Moreover, since every mark of t is ≤ k and every mark of s′ is
≤ k, we are sure that, for every x ∈ Var(l) ∩ Var(r), M(l, x) ≤ k (because some non
smaller mark occurs in t) and mmax(xτ ′) ≤ k (because this mark occurs in s′), hence
mmax(xτ ′) ≤ k which ensures that mmax(t′) ≤ k and finally:

s′ k◦→R t
′
.

By Lemma 3, for every x ∈ Var(l), xτ ′ = xτ ′ -M(l, x) →∗
A xτ -M(l, x) = xτ.

Hence t
′ = C[rτ ′]→∗

A C[rτ ] = t.
2- The lemma can be deduced from point 1 above by induction on the integer n such
that s→n

S∪A t.

Definition 12 (Top domain of a term). Let t ∈ T ((F ∪ Q)≤k, {�}). We define the
top domain of t, denoted by Topd(t) as: u ∈ Topd(t) iff
1- u ∈ Pos(t)
2- ∀u1, u2 ∈ N∗ such that u = u1·u2, either m(t/u1) = 0 or |u2| ≤ (k+1−m(t/u1))d.

We then define the top of a term t, which is, intuitively, the only part of t which can be
used in a marked derivation using marks not greater than k.

Definition 13 (Top of a term). ∀ t ∈ T ((F ∪Q)≤k, {�}): Top(t) = Red(t,Topd(t)).

Lemma 7 (projecting one step ofR on S ∪ A)
Let s, t ∈ T (F≤k) such that:

1- s ◦→R t,
2- The marked rule (l, r) used in the above rewriting-step is such that m(l) = 0.
3- s is m-increasing.
Then, Top(s)→∗

A→S Top(t).

Proof (Sketch) By the hypotheses of the lemma

s = C[lσ], t = C[rσ]

for some C, σ, l, r, σ fulfilling (2-4) of marked rewriting and m(l) = 0. Let us then
define a contextD and marked substitutions τ , τ by: for every x ∈ V

D[] = Top(C[]). (10)

xτ = Top(xσ), xτ = Red(xσ,Pos(xτ )). (11)

We claim that
Top(s)→∗

A D[lτ ]→S D[rτ ] = Top(t). (12)

(This claim is carefully checked in [10] and makes use of lemma 2).

Lemma 8 (projectingR on S ∪ A)
Let s, t ∈ T (F≤k) and assume that s is m-increasing. If s k◦→∗

R t then, there exist
terms s′, t

′ ∈ T ((F ∪Q)≤k) such that s→∗
A s′, s′ →∗

S∪A t′ and t→∗
A t

′
.
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Proof. The marked derivation s ◦→∗
R t is wbu, hence it can be decomposed into n

successive steps where the hypothesis 2 of Lemma 7 is valid. Hypothesis 3 of Lemma 7
will also hold, owing to our assumption and to Lemma 5. We can thus deduce, in-
ductively, from the conclusion of Lemma 7, that Top(s) →∗

S∪A Top(t). The choice
s′ := Top(s), t′ := Top(t) fulfills the conclusion of the lemma.

Lemma 9. Let s ∈ T (F). Then s k→∗
R T iff s→∗

S∪A Q≤k
f .

Proof. (⇒): Suppose s k→∗
R t and t ∈ T . Let us consider the corresponding marked

derivation
s k◦→∗

R t (13)

where s := s. Derivation (13) is wbu and lies in T (F≤k). Let us consider the terms
s′, t

′
given by Lemma 8:

s→∗
A s′ →∗

S∪A t
′

(14)

and t→∗
A t

′
. Since t→∗

A Q≤k
f , by Lemma 2,

t
′ →∗

A Q≤k
f . (15)

Combining (14) and (15) we obtain that s→∗
S∪A Q≤k

f .

(⇐): Suppose s →∗
S∪A qj ∈ Q≤k

f . The hypotheses of Lemma 6 are met by s :=
s, s′ := s and t := qj . By Lemma 6 there exists some t

′ ∈ T ((F ∪ Q)≤k) such that
s k◦→∗

R t′ →∗
A qj ∈ Q≤k

f . These derivations are mapped (by removal of the marks)
into: s k→∗

R t′ →∗
A q ∈ Qf , which shows that t′ ∈ T hence that s k→∗

R T .

Proof. (of Theorem 2). By Lemma 9, ( k →∗
R)[T ] = (→∗

S∪A)[Q≤k
f ] ∩ T (F). The

rewriting systems S and A being ground are inverse-recognizability preserving (The-
orem 1). So (→∗

S∪A)[Q≤k
f ] is recognizable and thus ( k→∗

R)[T ] is recognizable. In a
second step one can extend Section 4.1 to the case where the restrictions (7) are not
assumed anymore and consequently fully prove Theorem 2.

Corollary 1. Every linear rewriting system of the class BU is inverse-recognizability
preserving.

4.2 Complexity

Upper-bounds. We estimate here the complexity of the algorithm underlying our proof
of Theorem 2.

Theorem 3. Let F be a signature with symbols of arity ≤ 1, let A be some n.f.t.a
recognizing a language T ⊆ T (F) and let R be a finite rewriting system in BU−(1).
One can compute a n.f.t.a B recognizing (→∗

R)[T ] in time O((log(|F|) ·‖A‖·‖R‖)3).

Our proof consists in reducing the above problem, via the computation of the ground
system S of Section 4.1, to the computation of a set of descendants modulo some set of
cancellation rules, which is achieved in cubic time in [2]. Since every left-basic semi-
Thue system can be viewed as a BU−(1) term rewriting system, Theorem 3 extends [2]
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(where a cubic complexity is proved for cancellation systems over a fixed alphabet) and
improves [1] (where a degree 4 complexity is proved for basic semi-Thue systems).

Let us turn now to term rewriting systems over arbitrary signatures. Given a system
R we define

A(R) := max{Card(PosV(l)) | l→ r ∈ R}.

Theorem 4. Let (R,F) a finite rewriting system in BU−(1) and A be some n.f.t.a
over F recognizing a language T ⊆ T (F). One can compute a n.f.t.a B recognizing
(→∗

R)[T ] in time polynomial w.r.t. ‖R‖ · ‖A‖A(R).

Our proof consists in computing the ground system S of Section 4.1 and to apply the
result of [8], showing that the set of descendants of a recognizable set via a ground
system S can be achieved in polynomial time.

Lower-bound

Theorem 5. There exists a fixed signature F and two fixed recognizable sets T1, T2

overF such that: the problem to decide, for a given linear term rewriting system (R,F)
in BU−(1), whether T2 ∩ (→∗

R)[T1] �= ∅, is NP-hard.

The proof in [10] consists of a P-time reduction of the problem SAT to the above prob-
lem. This result shows that the exponential upper-bound in Theorem 4 cannot presum-
ably be significantly improved.

5 Strongly Bottom-Up Systems

The following theorem is established in [10], even in the restricted case of semi-Thue
systems.

Theorem 6. For every k ≥ 1, the problem to determine whether a finite linear term
rewriting system (R,F) is BU(k) (resp. BU−(k)), is undecidable.

We are thus lead to define some stronger but decidable conditions.

5.1 Strongly Bottom-Up Systems

We abbreviate strongly bottom-up to sbu.

Definition 14. A system (R,F) is said SBU(k) iff
for every s ∈ T (F), t ∈ T (FN), s ◦→∗

R t ⇒ t ∈ T (F≤k).
We denote by SBU(k) the class of SBU(k) systems and by SBU =

⋃
k∈N

SBU(k) the
class of strongly bottom-up systems.

The following lemma is obvious.

Lemma 10. Every SBU(k) system is BU(k).

This stronger condition over term rewriting systems is interesting because of the fol-
lowing property.
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Proposition 1. For every k ≥ 0, it is decidable whether a finite term rewriting system
(R,F) is SBU(k).

Proof. Note that every marked derivation starting from some s ∈ T (F) and leading
to some t ∈ T (FN) \ T (F≤k) must decompose as s k+1◦→∗

R s′ ◦→∗
R t, with

s′ ∈ T (F≤k+1) \ T (F≤k). A necessary and sufficient condition for R to be SBU(k)
is thus that:

(( k+1◦→∗
R)[T (F≤k+1) \ T (F≤k)]) ∩ T (F) = ∅. (16)

By Theorem 2 the left-handside of equality (16) is a recognizable set for which we can
construct a f.t.a ; we then just have to test whether this f.t.a recognizes the empty set.

5.2 Sufficient Condition

We show here that the LFPO−1 condition of [25] is a sufficient and tractable condition
for the SBU property. Let us associate with every rewriting system a graph whose ver-
tices are the rules of the system and whose arcs (R,R′) express some kind of overlap
between the right-handside of R and the left-handside of R′. Every arc has a label in
{a, b, c, d} indicating the category of overlap that occurs and a weight which is an in-
teger (0 or 1). The intuitive meaning of the weight is that any derivation step using the
corresponding overlap might increase some mark by this weight. (This graph is a slight
modification of the sticking-out graph of [25]).

Definition 15. Let s ∈ T (F ,V), t ∈ T (F ,V) \ V and w ∈ PosV(t). We say that s
sticks out of t at w if
1- ∀v ∈ Pos(t) s.t. ε � v ≺ w, v ∈ Pos(s) and s(v) = t(v).
2- w ∈ Pos(s) and s/w �∈ T (F).
If in addition s/w �∈ V then s strictly sticks out of t at w.

Definition 16. Let R = {l1 → r1, . . . , ln → rn} be a system. The sticking-out graph
is the directed graph SG(R) = (V,E) where V = {1, . . . , n} and E is defined as
follows:
a) if lj strictly sticks out of a subterm of ri at w, i

a→ j ∈ E;

b) if a strict subterm of lj strictly sticks out of ri at w, i
b→ j ∈ E;

c) if a subterm of ri sticks out of lj at w, i
c→ j ∈ E;

d) if ri sticks out of a strict subterm of lj at w, i
d→ j ∈ E.

Figure 4 shows all the possibilities in the four categories a, b, c, d. The weight of an arc
of SG(R) is defined by its label: if the label of the arc is a or b (resp. c or d) then its
weight is 1 (resp. 0). The weight of a path in the graph is the sum of the weights of its
arcs. The weight of a graph is the l.u.b. of the set of weights of all paths in the graph.
The sticking-out graph of R1 of Example 1 is displayed in Figure 5. For an example
with arities strictly greater than 1 see Example 6.

Proposition 2. LetR be a linear system. If W (SG(R)) = k thenR ∈ SBU(k + 1).

The proof consists of two steps. One first shows that the proposition holds for semi-
Thue systems. In a second step one associates to every term-rewriting system R its
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Fig. 5. The sticking-out graph of R1

branch semi-Thue system defined by: T := {u → v ∈ F∗ × F∗ | ∃l → r ∈ R, ∃x ∈
V , ux ∈ B(l), vx ∈ B(r)}, where B(t) denotes the set of words over F ∪ V labeling
the branches of t. The apparition of the mark k+ 1 in a marked derivation forR would
imply the apparition of the mark k + 1 in a marked derivation for T . But every path of
weight k + 1 in SG(T ) leads to a path of weight k in SG(R).

Corollary 2 (sufficient condition). Let R be a linear system. If W (SG(R)) is finite
thenR ∈ SBU.

The above sufficient condition can be tested in P-time. An immediate consequence of
Corollary 2 is the following.

Proposition 3. 1- Every right-ground system is SBU(0).
2- Every inverse of a left-basic semi-Thue system is SBU(1).
3- Every growing linear system is SBU(1).
4- Every LFPO−1 system is SBU.

It can be checked, with ad hoc examples, that inclusions (2,3,4) above are strict.

Example 6. Let R5 = {f(g(x), a) → f(x, b)}. R5 �∈ LFPO−1 as SG(R) contains a
loop a so a loop of weight [1]. It is easy to show by an ad-hoc proof thatR5 ∈ SBU−(1).
However our sufficient condition is not able to captureR5.

6 Related Work and Perspectives

Related work Beside the references already mentioned, our work is also related to:
- [16,5] from which we borrow some framework concerning equivalence relations over
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derivations in order to give in [10] a criterium for the BU(k) property for STS,
- [15], where an undecidability result concerning a notion analogous to our SBU sys-
tems, makes us think that the SBU-condition (without any specified value of k) should
be undecidable for semi-Thue systems, hence for term rewriting systems.
Perspectives Let us mention some natural perspectives of development for this work:
- it is tempting to extend the notion of bottom-up rewriting (resp. system) to non-linear
systems. This class would extend the class of growing systems studied in [19]. Also
allowing free variables in the right-handsides seems reasonable.
- a dual notion of top-down rewriting and a corresponding class of top-down systems
should be defined. This class would presumably extend the class of Layered Transduc-
ing systems [22].

Some work in these two directions has been undertaken by the authors.

Acknowledgments. We thank the referees for their useful comments.
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Abstract. We investigate garbage collection of unreachable parts of
rooted graphs from a categorical point of view. First, we define this
task as the right adjoint of an inclusion functor. We also show that
garbage collection may be stated via a left adjoint, hence preserving col-
imits, followed by two right adjoints. These three adjoints cope well with
the different phases of a traditional garbage collector. Consequently, our
results should naturally help to better formulate graph transformation
steps in order to get rid of garbage (unwanted nodes). We illustrate this
point on a particular class of graph rewriting systems based on a double
pushout approach and featuring edge redirection. Our approach gives
a neat rewriting step akin to the one on terms, where garbage never
appears in the reduced term.

1 Introduction

Garbage collection has been introduced [5,9] in order to improve the manage-
ment of memory space dedicated to the run of a process. Such memory can be
seen as a rooted graph, where the nodes reachable from the roots represent the
memory cells whose content can potentially contribute to the execution of the
process, while the unreachable nodes represent the garbage, i.e., the cells that
may become allocated at will when memory is required. Several algorithms have
been proposed in the literature in order to compute the reachable and unreach-
able nodes (see for instance [4,8]).

In this paper, we investigate garbage collection from a categorical point of
view. More precisely, our main purpose is a theoretical definition of the process
of calculating the reachable nodes of a rooted graph. This corresponds to re-
moving the garbage, in the sense of calculating the memory space made of the
reachable cells, starting from a memory space that may include reachable as
well as unreachable cells. We show that this process can be defined as the right
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Nationale de la Recherche.
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adjoint of an inclusion functor. We also propose an alternative definition of this
process via a left adjoint, followed by two right adjoints. This second definition
is close to the actual tracing garbage collection algorithms, which proceed by
marking the reachable nodes before sweeping the garbage.

Besides the categorical characterisation of the garbage collection process,
which can be considered as a motivation per se, the original motivation of
this work comes from the definition of graph rewrite steps based on the dou-
ble pushout approach [7]. In these frameworks a rewrite step is defined as a span
L ← K → R where L, K and R are graphs and the arrows represent graph
homomorphisms. Let us consider, for instance, the category of graphs defined in
[6] (this category is similar to the category Gr of section 3.1 except that graphs
are not rooted).

The application of such a rule to a graph G consists in finding a homomor-
phism (a matching) m : L→ G and computing the reduced graph H so that the
following diagram

L
m ��

K
l��

d��

r �� R
m′
��

G D
l′�� r′

�� H
constitutes a double pushout (some conditions are required to ensure the exis-
tence of this double pushout [7]).

A main drawback of this approach is that the reduced graph H may contain
unreachable nodes. To illustrate this point, let us consider a simple example.
Let f(x) → f(b) be a classical term rewrite rule. When it is applied on the term
f(a), the resulting term is f(b). However, in the double pushout approach (where
terms are viewed as graphs), the reduced graph is not just f(b): it includes also
the constant a. Indeed, the term rewrite rule f(x) → f(b) is turned into a span
f(x) ← K0 → f(b), where the arrows are graph homomorphims (the content of
K0 does not matter here). When this rule is applied to the graph f(a), according
to the double pushout approach, we get the diagram

f(x)

��

K0
��

��

�� f(b)

��
f(a) D0

���� H0

where H0 contains both terms f(b) and a. Actually, the element a occurs in D0,
because the left-hand side is a pushout; thus, a also occurs in H0, because the
right-hand side is a pushout. In order to get rid of a, and more generally to remove
all unreachable nodes from the graph H , we propose to use our categorical
approach of garbage collection.

When graph rewrite steps are defined following an algorithmic approach such
as [2], garbage is easily incorporated within a rewrite step. Unfortunately, in
categorical approaches to graph rewriting, garbage is not easily handled. In sec-
tion 8 of [1], Banach discussed the problem of garbage in an abstract way. He
mainly considered what is called “garbage retention”, that is to say, garbage is
not removed from a graph, as we do, but it should not participate in the rewrit-
ing process. In [3], Van den Broek discussed the problem of generated garbage
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in the setting of graph transformation based on single pushout approach. He
introduced the notion of proper graphs. Informally, a proper graph is a graph
where garbage cannot be reachable from non garbage part. The rewrite relation
is defined as a binary relation over proper graphs. That is to say, a rewrite rule
can be fired only if the resulting graph is proper. In some sense, Van den Broek
performs a kind of garbage retention as Banach does.

Outline of the paper

Rooted graphs are introduced in section 2 in order to model reachable and
unreachable parts in data-structures. Garbage collection is presented in terms of
right and left adjoints in section 3. A double pushout approach for rooted graphs
rewriting is defined in section 4, and garbage collection is incorparated within
this rewriting setting. We conclude in section 5. Due to space limitations, proofs
have been omitted.

2 Rooted Graphs

Rooted graphs are defined as term graphs [2], together with a subset of nodes
called roots. These graphs are intended to model usual data-structures imple-
mented with pointers, such as circular lists. The addition of roots models the
fact that, due to pointer redirections, some data may become unreachable.

Definition 1 (Signature). A signature Ω is a set of operation symbols such
that each operation symbol f in Ω is provided with a natural number ar(f)
called its arity.

We assume Ω fixed throughout the rest of the paper. Moreover, for each set
A, the set of strings over A is denoted A∗, and for each map f : A → B, the
map f∗ : A∗ → B∗ is the extension of f to strings defined by f∗(a1 . . . an) =
f(a1) . . . f(an).

Definition 2 (Graph). A rooted graph is a tuple G = (NG,NR
G ,NΩ

G ,LG,SG)
where NG is the set of nodes of G, NR

G ⊆ NG is the set of roots, NΩ
G ⊆ NG is the

set of labeled nodes, LG : NΩ
G → Ω is the labeling function, and SG : NΩ

G → N ∗
G

is the successor function such that, for each labeled node n, the length of the
string SG(n) is the arity of the operation LG(n).

The arity of a node n is the arity of its label and the i-th successor of a node
n is denoted succG(n, i). The edges of a graph G are the pairs (n, i) where
n ∈ NΩ

G and i ∈ {1, . . . , ar(n)}, the target is the node tgt(n, i) = succG(n, i).
The set of edges of G is written EG The fact that f = LG(n) is written n : f ,
an unlabeled node n of G is written n : •. Informally, one may think of • as an
anonymous variable. The set of unlabeled nodes of G is denoted NX

G , so that
NG = NΩ

G +NX
G , where “+” stands for the disjoint union.
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Example 1. Let G be the graph defined by NG = {m,n, o, p, q, r, s, t}, NΩ
G =

{m, o, p, s, t}, NX
G = {n, q, r}, LG is defined by: [m �→ f, o �→ g, p �→ h, s �→

i, t �→ j], SG is defined by: [m �→ no, o �→ np, p �→ qrm, s �→ m, t �→ tsn], and
roots of G are NR

G = {m}.
Graphically G is represented as: s : i �� m : f

���
���

�

��

r : •

t : j

��

��
��

n : • o : g�� �� p : h ��

��		����������
q : •

Roots of graphs are underlined. Generally in our examples the order of suc-
cessors is either irrelevant or clear from the context.

Definition 3 (Graph homomorphism). A rooted graph homomorphism ϕ :
G→ H is a map ϕ : NG → NH that preserves the roots, the labeled nodes and
the labeling and successor functions, i.e., ϕ(NR

G ) ⊆ NR
H , ϕ(NΩ

G ) ⊆ NΩ
H , and for

each labeled node n, LH(ϕ(n)) = LG(n) and SH(ϕ(n)) = ϕ∗(SG(n)).
The image ϕ(n, i) of an edge (n, i) of G is defined as the edge (ϕ(n), i) of H .

Example 2. Consider the following graph H : v : i �� a : f



���
��

��
b : • c : g�� �� d : • e : •

Let ϕ : NH → NG, where G is the graph in Example 1, be defined as: ϕ =
[a �→ m, b �→ n, c �→ o, d �→ p, e �→ p, v �→ s]. Then, ϕ is a graph homomorphism
from H to G.

3 Garbage Collection and Adjunction

A node in a rooted graph is reachable if it is a descendant of a root; the un-
reachable nodes form the garbage of the graph. We now address the problem
of garbage collection in graphs, in both its aspects: either removing the un-
reachable nodes or reclaiming them; we also consider the marking of reachable
nodes, which constitutes a major step in the so-called tracing garbage collection
process. We prove in this section that the tracing garbage collection process can
be easily expressed in term of adjunctions.

3.1 Garbage Removal Is a Right Adjoint

Rooted graphs and their homomorphisms form the category of rooted graphs.
From now on, in this paper, the category of rooted graphs is denoted Gr, the
category of non-rooted graphs is denoted Gr0, and by “graph” we mean “rooted
graph”, unless explicitly stated.

Definition 4 (Reachable nodes). The reachable nodes of a graph are defined
recursively, as follows: a root is reachable, and the successors of a reachable node
are reachable nodes.

Example 3. The graph G defined in example 1, has m,n, o, p, q, r as reachable
nodes. Nodes s, t are considered as garbage, as well as the edges out of these
nodes.
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Definition 5 (Reachable graph). A reachable graph is a graph where all
nodes are reachable.

The reachable graphs and the graph homomorphisms between them form a full
subcategory of Gr, called the category of reachable graphs, RGr. Let V denote
the inclusion functor: V : RGr→ Gr .

Definition 6 (Maximal reachable subgraph). The maximal reachable sub-
graph of G is the graph Λ(G) such that NΛ(G) is the set of reachable nodes of
G, NR

Λ(G) = NR
G , NΩ

Λ(G) = NΛ(G) ∩NΩ
G , and LΛ(G), SΛ(G) are the restrictions of

LG, SG to NΛ(G).

Since a graph homomorphism ϕ : G→ H preserves the roots and the successors,
it does also preserve the reachable nodes. Hence, it can be restricted to the
maximal reachable subgraphs: Λ(ϕ) : Λ(G)→ Λ(H).

Definition 7 (Garbage removal functor). The garbage removal is the func-
tor: Λ : Gr → RGr that maps each graph G to its maximal reachable sub-
graph Λ(G) and each graph homomorphism ϕ : G → H to its restriction
Λ(ϕ) : Λ(G)→ Λ(H).

Clearly, the composed functor Λ ◦ V is the identity of RGr : a reachable graph
is not modified under garbage removal. Moreover, the next result proves that
RGr is a coreflective full subcategory of Gr.

Proposition 1 (Garbage removal is a right adjoint). The garbage removal
functor Λ is the right adjoint for the inclusion functor V .

The garbage removal functor Λ : Gr → RGr is not a left adjoint. Indeed, a
left adjoint does preserve the colimits, whereas the functor Λ does not preserve
pushouts, as shown in the following example:

�

�

�

�

m : • ��
�

�

�

	

m : f �� n : •

�� ��
�

�

�

	

p : g �� m : • ��
�

�

�

	

p : g �� m : f �� n : •

If Λ is applied to this square, the graphs of the upper row will be the empty
graphs, whereas the graphs of the lower row will remain unchanged. The obtained
diagram is no longer a pushout in category RGr, since label f and node n : •
appear from nowhere.

3.2 Reachability Marking Is a Left Adjoint

Definition 8 (Marked graph). A marked graph is a graph M with a set
N �

M ⊆ NM of marked nodes, such that every root is marked and every successor
of a marked node is marked (so that all the reachable nodes of a marked graph are
marked but unreachable nodes can be marked). A marked graph homomorphism
is a graph homomorphism that preserves the marked nodes.
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The marked graphs and their homomorphisms form the category of marked
graphs Gr′.

LetΔ : Gr′ → Gr denote the underlying functor, that forgets about the mark-
ing, and let ∇ : Gr → Gr′ denote the functor that generates a marked graph
from a graph, by marking all its reachable nodes. The next result is straightfor-
ward, since the marking does not modify the underlying graph.

Proposition 2 (Reachability marking is a left adjoint). The reachability
marking functor ∇ is the left adjoint for the underlying functor Δ, and this
adjunction is such that Δ ◦ ∇ ∼= IdGr.

Definition 9 (Reachable marked graph). A reachable marked graph is a
marked graph where all nodes are reachable. So, all the nodes of a reachable
marked graph are marked.

The reachable marked graphs and the marked graph homomorphisms form a
full subcategory of Gr′, called the category of reachable marked graphs, RGr′.
One can note that RGr′ is isomorphic to RGr. We make the distinction be-
tween those two cateogries because it enables to give a neat categorical view
of how garbage collection is performed. Let V ′ denote the inclusion functor:
V ′ : RGr′ → Gr′ . As in proposition 1, the inclusion functor V ′ has a right
adjoint: Λ′ : Gr′ → RGr′ which is the garbage removal functor for marked
graphs.

3.3 Tracing Garbage Collection

A tracing garbage collector first determines which nodes are reachable, and then
either discards or reclaims all the unreachable nodes. In categorical terms, the
fact that reachability marking can be used to perform garbage collection is ex-
pressed by theorem 1 and proposition 3 below.

Similarly to the adjunction ∇ 0 Δ, there is an adjunction ∇R 0 ΔR where
ΔR : RGr′ → RGr denotes the underlying functor, that forgets about the
marking, and ∇R : RGr → RGr′ denotes the functor that generates a marked
graph from a reachable one, by marking all its nodes. Actually, this adjunction
is an isomorphism. RGr and RGr′ are not identified since they formalize well
a phase of a natural garbage collector. Indeed, classical garbage collector begins
by suspending the execution of current processes. Then it performs a marking
of reachable memory cells (∇). Afterwards, all unmarked cells are deallocated
(Λ′) and finally the marking is forgotten (ΔR).

In the following diagram, the four adjunction pairs are represented.

Gr
Λ

��

∇

��

⊥

�

RGr
V



∇R

��
Gr′

Λ′
��

Δ

��

RGr′
V ′



ΔR

��

⊥

∼=
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Functors ∇◦V and V ′ ◦∇R are equal, since they both map a reachable graph
H to the marked graph made of H with all its nodes marked:

∇ ◦ V = V ′ ◦ ∇R : RGr→ Gr′

Theorem 1 below provides a categorical formalization of the tracing garbage
removal process, which can be decomposed in three steps: First, the main step
freely generates the marked graph ∇(G) from the given graph G. Then, the
reachable marked graph Λ′(∇(G)) is obtained by throwing away the non-marked
nodes. Finally, the reachable graph ΔR(Λ′(∇(G))) is obtained by forgetting the
marking.
According to theorem 1, ΔR(Λ′(∇(G))) is isomorphic to Λ(G).

Theorem 1 (Garbage removal through reachability marking)

Λ ∼= ΔR ◦ Λ′ ◦ ∇ .

So, the garbage removal functor Λ can be replaced by ΔR ◦ Λ′ ◦ ∇. This means
that the main step in the tracing garbage removal process is the reachability
marking: indeed, the application of ΔR is “trivial”, and the application of Λ′ to
the image of ∇ simply throws away the unmarked nodes.

In order to express garbage reclaiming, let N and N � denote the functors
from Gr′ to Set that map a marked graph to its set of nodes and to its set of
marked nodes, respectively. They can be combined into one functor with values
in the following category SubSet: the objects of Subset are the pairs of sets
(X,Y ) such that Y ⊆ X , and a morphism is a pair of maps (f, g) from (X,Y )
to (X ′, Y ′), where f : X → X ′, g : Y → Y ′, and g is the restriction of f .
(N ,N �) : Gr′ → SubSet
The complement X \ Y is the set of unreachable nodes: this is expressed in the
next result. Note that the set complement, that maps (X,Y ) to X \ Y , cannot
reasonably be extended to a functor from SubSet to Set.

Proposition 3 (Garbage reclaiming through reachability marking)
The composition of ∇ with (N ,N �), followed by the set complement, provides
the set of unreachable nodes.

So, the garbage reclaiming can be expressed as (N ,N �) ◦ ∇ followed by the set
complement. Here also, this means that the main step in the tracing garbage
reclaiming process is the reachability marking.

4 Application: Rooted Graph Rewriting with Garbage
Removal

In this section we focus on a class of graph rewrite systems dedicated to transform
data-structures with pointers [6]. This class has been defined using the double
pushout approach [7]. We mainly show how rewrite steps can be enhanced by
integrating garbage removal. This integration can be generalized to other rewrite
systems based on pushouts, thanks to the fact that left adjoints preserve colimits.
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4.1 Disconnections

This section will be used in the left hand side of the double pushout construction.
Definitions are adapted from [6], with a more homogeneous presentation.

The disconnection of a graph L is made of a graph K and a graph homomor-
phism l : K → L. Roughly speaking, K is obtained by redirecting some edges
of L toward new, unlabeled targets, and the homomorphism l reconnects all
the disconnected nodes: NK is made of NL together with some new, unlabeled
nodes, and l is the identity on NL.

Definition 10 (Disconnection kit). A disconnection kit k = (El, Ng, Eg) for
a graph L, where El, Eg are susbsets of EL and Ng ⊆ NL, is made of: (i) a set
of edges El, called the locally redirected edges, (ii) a set of nodes Ng, called the
globally redirected nodes, and (iii) another set of edges Eg, called the globally
redirected edges, that is disjoint from El and such that the target of every edge
in Eg is in Ng. A disconnection kit (El, Ng, ∅) is simply denoted (El, Ng).

Definition 11 (Disconnection of a graph). Let L be a graph, with a dis-
connection kit k = (El, Ng, Eg). Let K be the graph defined by:
– NK = NL +NE +NN , where NE is made of one new node n[i] for each edge

(n, i) ∈ El and NN is made of one new node n[0] for each node n ∈ Ng,
– NR

K is made of one node for each root n of L: n itself if n �∈ Ng and n[0] if
n ∈ Ng.

– NΩ
K = NΩ

L ,
– for each n ∈ NΩ

L : LK(n) = LL(n),
– for each n ∈ NΩ

L and i ∈ {1, . . . , ar(n)}: if (n, i) �∈ El+Eg then succK(n, i) =
succL(n, i), if (n, i) ∈ El then succK(n, i) = n[i] and if (n, i) ∈ Eg then
succK(n, i) = tgt(n, i)[0].

Let l : NK → NL be the map defined by: l(n) = n if n ∈ NL, l(n[i]) =
succL(n, i) if (n, i) ∈ El, l(n[0]) = n if n ∈ Ng. Clearly l preserves the roots,
the labeled nodes and the labeling and successor functions, so that it is a graph
homomorphism. Then l : K → L is the disconnection of L with respect to k.

Example 4. Let L4 be the following graph: x : f

�����
��

�� ����
���

y : • z : g�� �� t : •

If we respec-

tively consider disconnection kits k1 =({(x, 1), (z, 2)}, ∅) and k2 =({(x, 3)}, {x}),
we have the following disconnections of L4, respectively K4 and K ′

4:

x[1] : • x : f��

��

�� t : •

y : • z : g�� �� z[2] : •

x[0] : • x : f

�����
��

��

�� x[3] : •

y : • z : g�� �� t : •

Definition 12 (Matching). Let L be a graph with a disconnection kit k =
(El, Ng). A matching of L consistent with k is a graph homomorphismm : L→ G
such that the restriction of m to (NΩ

L ∪Ng) is injective.
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Definition 13 (Disconnection of a matching). Let L be a graph, with a
disconnection kit k = (El, Ng), and let m : L→ G be a matching of L consistent
with k. Let E′

l = m(El) and N ′
g = m(Ng) (since m is a matching, the restrictions

of m are bijections: El
∼= E′

l and Ng
∼= N ′

g ). Let E′
g be the set of the edges of

G −m(L) with their target in N ′
g, and let k′ = (E′

l , N
′
g, E

′
g). Let l : K → L be

the disconnection of L with respect to k, and l′ : D → G the disconnection of
G with respect to k′. Let d : NK → ND be the map defined by: d(n) = m(n) if
n ∈ NL, d(n[i]) = m(n)[i] if n[i] ∈ NE and d(n[0]) = m(n)[0] if n[0] ∈ NN .
Clearly, d is a graph homomorphism. Then the following square in Gr is called
the disconnection of m with respect to k:

L

m ������������� K
l�� d �� D

l′

��											

G

In other words the disconnection of a matching with respect to a disconnection
kit consists in the building of, D (and the appropriate morphisms) once K,L,G
and m, l are given. Informally D is made of three parts. The first one is the part
of G that is not matched. The second part is the image of L in G. Finally there
are nodes without labels introduced to perform redirections (m(n)[i] for local
redirections, m(n)[0] for global ones).

Example 5. Consider the following graphs L5, G5:

L5 = x : f
��

��

��

t : •

z : g ��

��

t′ : •

G5 = u : h �� x : f
�� ��

��

t : i




��

v : j ��

�� ��






z : g

�� ��������

and let k be the disconnection kit ({(x, 2)}, {x}), the edge (x, 2) being the edge
joining node x to node z.

The graph homomorphism m5 = [x �→ x, t �→ t, t′ �→ t, z �→ z], is a morphism
fromL5 toG5. It is also a matching ofL5 consistent with k. Now by disconnection
of G5 with respect to k we have the graphs K5 which is the disconnection of L5
with respect to disconnection kit ({(x, 2)}, {x}), and D5 which is the disconnec-
tion of G5 with respect to disconnection kit ({(x, 2)}, {x}, {(u, 1), (v, 2), (t, 2)}):
K5 =

x : f
��

��

������������ t : • x[0] : •

z : g ��

��

t′ : • x[2] : •

D5 =

u : h �� x[0] : • t : i
��

��

v : j ��

�� ��
z : g ��

��
x : f��

��

��

x[2] : •

4.2 Rooted Graph Rewriting

Definition 14 (Rewrite rule). A rewrite rule, or production, is a span of
graphs p = (L l← K

r→ R) where l is the disconnection of L with respect to a
disconnection kit k = (El, Ng), and the restriction of r to NX

L is injective and
has its values in NX

R . Then p is a rewrite rule consistent with k.
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A rewrite step is defined from a rewrite rule p = (L l← K
r→ R) and a matching

m : L → G, both with respect to a disconnection kit k = (El, Ng) of L. The
role of the rewrite step consists in: (i) adding to G an instance of the right-hand
side R of p, (ii) performing some local redirections of edges in G: each edge
(n, i) in m(El) is redirected to the new target n[i], (iii) performing some global
redirections of edges in G: all incoming edges of a node n in m(Ng), except the
edges in the image of the matching, are redirected to the new target n[0], (iv)
modifying the roots of G: if n is a root in G not in m(Ng) then it remains a root,
but if n is a root in G and in m(Ng) then n[0] becomes a root instead of n.

As in [6], the basic ingredient in the double pushout approach to graph rewrit-
ing is lemma 1 below, about the reflection of pushouts by a faithful functor. The
faithful functor in [6] was the node functor N , from the category Gr0 of non-
rooted graphs to the category of sets. Here, it will be the forgetful functor U0

from the category Gr of rooted graphs to the category Gr0 of non-rooted graphs,
which clearly is faithful. Since this lemma has not been stated in this form in
[6], its proof is given below.

Lemma 1 (Pushout reflection). Let Φ : A → A′ be a faithful functor. Let

Σ = (A1
f1← A0

f2→ A2) be a span and let Γ be a square in A:

A1

g1 �������� A0
f1�� f2 �� A2

g2��������

A
If Φ(Γ ) is a pushout in A′ and if for each cocone Δ on Σ in A, there is a

morphism h : A → B in A (where B is the vertex of Δ) such that Φ(h) is the
cofactorisation of Φ(Δ) with respect to Φ(Γ ), then Γ is a pushout in A.

For each span Σ of sets (N1
ϕ1← N0

ϕ2→ N2), let ∼ denote the equivalence relation
induced by Σ on N1 +N2, which means that it is generated by ϕ1(n0) ∼ ϕ2(n0)
for all n0 ∈ N0, and let N be the quotient N = (N1 + N2)/ ∼. For i ∈ {1, 2},
let ψi : Ni → N map every node ni of Gi to its class modulo ∼. Then, it is
well-known that the following square is a pushout in Set, which will be called
canonical :

N0ϕ1

�������� ϕ2

��������

N1

ψ1 �������� N2

ψ2��������

N

The notion of “strongly labeled span of graphs” comes from [6], where it was
defined for non-rooted graphs, but actually roots are not involved in this notion.

Definition 15 (Strongly labeled span of graphs). A span Σ = (G1
ϕ1← G0

ϕ2→ G2) in Gr is strongly labeled if, as soon as two labeled nodes in N (G1) +
N (G2) are equivalent with respect to Σ, they have the same label and equivalent
successors.
Definition 16 (Canonical square of graphs). Let Σ = (G1

f1← G0
f2→ G2)

be a strongly labeled span in Gr. The canonical square on Σ is the square in
Gr:
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G1

ψ1 �������� G0
ϕ1�� ϕ2 �� G2

ψ2��������

G
where the underlying square of nodes is the canonical pushout in Set, a node
n in G is a root if and only if n = ψi(ni) for a root ni in G1 or G2, a node
n in G is labeled if and only if n = ψi(ni) for a labeled node ni in G1 or G2,
and moreover the label of n is the label of ni and the successors of n are the
equivalence classes of the successors of ni.

Clearly, Γ (Σ) is a commutative square in Gr. It is actually a pushout in Gr as
stated in Theorem 2. The next result is proved in [6].

Lemma 2 (Pushout of non-rooted graphs). Let Σ be a strongly labeled
span in Gr, and let Γ be the canonical square on Σ. Then U0(Γ ) is a pushout
in Gr0.

Theorem 2 (Pushout of rooted graphs). Let Σ be a strongly labeled span
in Gr, and let Γ be the canonical square on Σ. Then Γ is a pushout in Gr.

It is easy to see that a disconnection square is the canonical square on a strongly
labeled span, so that the next result follows from theorem 2.

Theorem 3 (A pushout complement). Let L be a graph with a disconnec-
tion kit k and let m be a matching of L consistent with k. The disconnection
square of m with respect to k is a pushout in the category of graphs.

Theorem 3 means that d and l′ form a complement pushout to l and m. Other
complement pushouts to l and m can be obtained by replacing E′

g, in defini-
tion 13, by any of its subsets.

The next result is not so easy, its proof can be found in [6] (except for the
property of the roots, which is clear).

Theorem 4 (A direct pushout). Let p be a rewrite rule (L l← K
r→ R) and

m : L → G a matching, both consistent with a disconnection kit k of L. Then
the span D d← K

r→ R is strongly labeled, so that the canonical square on it is
a pushout.

Definition 17 (Rewrite step). Let p be a rewrite rule (L l← K
r→ R) and

m : L → G a matching, both consistent with a disconnection kit k of L. Then
G rewrites to H using rule p if there is a diagram:

L
m ��

K
l��

d��

r �� R
m′��

G D
l′�� r′

�� H
where the left hand side of the diagram is the disconnection of m with respect
to k and the right hand side is a canonical square.

So, according to theorems 3 and 4, a rewrite step corresponds to a double pushout
in the category of graphs.
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Proposition 1 (A description of the nodes). With the notations and as-
sumptions of definition 17, the representatives of the equivalence classes of nodes
of NR + ND can be chosen in such a way that: NΩ

H = (NΩ
G − m(NΩ

L )) +
NΩ

R and NX
H = NX

G + (NX
R − r(NX

L )) and NR
H = r′(NR

D ) ∪m′(NR
R ).

4.3 Graph Rewriting with Garbage removal

In this section we give a direct application of garbage removal via a left adjoint
in rooted graph rewriting. Indeed, left adjoints preserve pushouts. Therefore it
is possible to apply functor ∇ on the double push out. Then the composition of
ΔR ◦ Λ′ gives us the garbage free reduced graph. This schema applies to every
double pushout settings, we illustrate this on a particular one.

Definition 18 (Rewrite step with garbage removal). Let p be a rewrite
rule (L l← K

r→ R) and m : L → G a matching, both consistent with a discon-
nection kit k of L. Then G rewrites with garbage removal to P using rule p if
there is a diagram:

L
m ��

K
l��

d��

r �� R
m′��

G D
l′�� r′

�� H

where the left hand side is the disconnection of m with respect to k and the
right hand side is a canonical square, and P = V (ΔR(Λ′(∇(H)))) = V (Λ(H)).

Example 6. First, let us simulate a term rewrite rule. Consider the rule f(x) →
g(b). In our setting it can be implemented by the following span s:




�

�



n : f
��

m : •

l��
�

�

�

�

n : f
��

n[0] : •

m : •

r ��
�

�

�

�

n : f

��

o : g

��
m : • p : b

Where l, r are the expected graph homomorphisms with l(n[0]) = n and r(n[0])=
o. Then G6 rewrites to P6 by using the rule s

G6 = q : h ��
  
n : f �� m : a

!!
P6 = p : b o : g�� q : h""

��

Indeed one has the following double pushout in Gr:g�
�

�
�

n : f

��
m : •

l��

�
�

�
	

n : f

��

n[0] : •

m : •
r ��




�

�


n : f

��

o : g

��
m : • p : b

m
�� d�� m′

���
�

�
	

q : h ##
$$
n : f

��
m : a

%%�����
l′��




�

�


q : h

�� &&

n : f

��
n[0] : • m : a

''������ r′
��




�

�


o : g

��

q : h
""
(( n : f

��
p : b m : a

))�����
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In this example f(a) becomes unreachable because of edge redirection. Let
H6 be the graph at the bottom right of this double pushout. Then, Λ(H6) is the
marked graph P6, as above.

The following graph illustrates well the role played by roots in garbage re-
moval. Consider G′

6 where the root is now n, it rewrites to P ′
6 with:

G′
6 = q : h ##

$$
n : f

��
m : a

))�����

P ′
6 = o : g

��
p : b

This simple example is not possible to simulate in [6] where garbage cannot
be removed.

Another interesting property of graph rewriting with garbage removal is the
management of roots. New roots can be introduced by simple rules like:




�

�



n : f

��
m : a

l��
�

�

�

�

n : f

��

n[0] : •

m : a

r ��
�

�

�

�

n : f

��

o : r

**

m : a

Where r(n[0]) = o and l(n[0]) = n. This rule adds a new root o : r.
Dually, the number of roots can be reduced, in special circumstances: this can

be done by associating two roots equally labeled. For instance consider the span:
�

�

�

�

o1 : f

��

o2 : f

**�����

m : a

l��
�

�

�

�

o1 : f

��

o2 : f

**�����

m : a

r ��



�

�



o : f

��
m : a

where r(o1) = r(o2) = o. Note that by injectivity hypothesis of matching on
labeled nodes, the left hand side of the span must match two different roots.
Note also that injectivity hypothesis on morphism r only applies to unlabeled
nodes, thus o1, o2 can be collapsed to a single node o.

Example 7. Let us now consider a more complicated example: the in-place
reversal of a list between two particular cells. For example, given the graph:

h �� rev �� ���

�

�

�

1 ��
�

�

�

�

2 ��
�

�

�

�

3 ��
�

�

�

�

4 ��
�

�

�

�

5 . . .

we want to produce the following graph: nil
�

�

�

�

1��
�

�

�

�

2��
�

�

�

�

3�� h��

Potentially, the rest of the graph should be removed. rev is defined by means
of four rules. Moreover, one can notice that the programmer does not need to
take a particular care of garbage management: it is automatically managed. The
first rule is for trivial cases (when the first and last items are equal) and is im-
plemented as follows:

�

�

�

	

n : rev ##
$$
m : • l��

�

�

�

�

n : rev ��
  
m : •

n[0] : •

r ��
�

�

�

	

n : rev ##
$$
m : •
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This rule only performs a global redirection from n to m (r(n[0]) = m and
l(n[0]) = n), thus node n : rev will be garbage removed after the rewrite step
(nothing can no longer points to it because of the global redirection).

The second rule classically introduces an auxiliary function revb of three para-
meters which performs the actual rewriting of the list. The first two parameters
of revb record the pair of list cells to be inverted (current and preceding cells) and
the last parameter stores the halting cell. It is done by the span L7 ← K7 → R7
where:

�

�

�

�

K7 = s : cons

�� ���������
n : rev�� �� e : cons

��

�� e1 : •

s1′ : • s1[2] : • e′ : • s1 : • n[0] : •
�

�

�

�

n : rev
���������

�� e : cons

��

++

L7 = s : cons

��

�� s1 : • e′ : •

s1′ : • e1 : •

�

�

�

�

m : revb

�� ����������
  

n : rev

���������
�� e : cons

��

++

R7 = s : cons

�� ��������� s1 : • e′ : •

s1′ : • t : nil e1 : •

where n[0] : • mapped to n on L7 and to m on R7, s1[2] is mapped to t in R7.
The general step of revb is given by the span L′

7 ← K ′
7 → R′

7, where:
7 7 7


�

�


K ′

7 = m : revb

�� ���������
�� e : cons ��

,,��
���

�� e1 : • o1[2] : • o2 : •

m[1] : • m[2] : • e′ : • o1 : cons ��

��

o1′ : • p : •�

�

�

�

p : • m : revb��

���������
�� e : cons

++

��
L′

7 = o1 : cons

��

�� o2 : • e′ : •

o1′ : • e1 : •

�

�

�

�

R′
7 = o1 : cons

��

--

m : revb��

��

�� e : cons

++

��
p : • o2 : • e′ : •

o1′ : • e1 : •

where m[1],m[2] are respectively mapped to o1, o2 and o1[2] is mapped to p
in R′

7. This rule disconnects the first two parameters of revb (m[1],m[2]) to
make them progress along the list (p is replaced by o1 and o1 by o2). It also
redirects the local edge of the list to be reversed (second edge from o1) to the
previous cell of the list (node p). One has to remember the injectivity hypothesis
of the matching homomorphism on labeled nodes. It ensures that nodes o1, e are
actually different nodes. Thus there can be no confusion with the halt case.

The halt case for revb is similar to the one on rev and just amounts to a global
redirection, namely:
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�
�

�
	

n : revb ��
  

��

m : •

p : •

l��



�

�


n : revb ��

  

��

m : •

p : • n[0] : •

r ��
�
�

�
	

n : revb ��
  

��

m : •

p : •

where n[0] is mapped to m on the graph on the right side.
We let the reader check on examples that these rules implement the in-situ

list reversal between two given nodes.

5 Conclusion

We have presented a categorical approach to garbage collection and garbage
removal which can be applied to various graph rewriting frameworks, especially
the ones based on pushouts. Garbage removal may be seen either as a right
adjoint or as a left adjoint. The right adjoint is the mathematical translation of
the description of what is garbage collection: the removal of unreachable parts.
On the other hand the left adjoint gives an operational point of view. It illustrates
well the three basic steps of any real garbage collector in programming languages:
when a garbage collector starts there is first a propagation phase to compute the
live parts, then follows the removal of non live nodes and finally the halt of the
garbage collector (the return to a normal evaluation mode). Those three steps
are represented by three associated functors.

As a future work, we plan to use graph transformation frameworks in order
to model memory, as well as mutable objects, transformation.
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Abstract. We introduce a notion of rewrite rules operating on a par-
ticular class of data-structures, represented as (cyclic) term-graphs. All
basic transformations are available: node creation/deletion, node rela-
beling and edge redirections (including global redirections). This allows
one to write algorithms handling pointers that cannot be efficiently spec-
ified using existing declarative languages. Such rewrite systems are not
confluent in general, even if we stick to orthogonal, left-linear rules. In
order to ensure unique normal forms, we introduce a notion of priority
ordering between the nodes, which allows the programmer to control the
normalization of a graph if needed. The use of total priority orderings
makes rewriting purely deterministic, which is not always efficient in
practice. To overcome this issue, we then show how to define more flexi-
ble strategies, which yield shorter derivations and avoid useless rewriting
steps (lazy rewriting).

1 Introduction

Systems of rewrite rules [7] provide a very natural and convenient way of speci-
fying algorithms. Assume for instance that we want to define a function add last
adding an element x at the end of a list l. This can be done using the following
rules:

add last(x,nil)→ cons(x,nil) (ρ1)
add last(x, cons(y, l))→ cons(y, add last(x, l)) (ρ2)

However, these rules have an obvious drawback from a programming point
of view: they do not really insert x at the end of l (as it could be done in any
imperative language, using pointer redirections), but rather reconstruct the list
entirely. Additional memory is consumed, which could be in principle avoided.
Even if the memory can be freed afterwards using garbage collection (which is
not always the case), additional computation time is consumed.

Thus it would be very desirable to allow the programmer to specify how the
memory should be used and which “nodes” should be reused. Many pointer-
based algorithms extensively rely on this possibility, for instance, the Schorr-
Waite algorithm [14] uses a link reversal technique to avoid the need for a stack
� This work has been partly funded by the project ARROWS of the French Agence

Nationale de la Recherche.
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during the exploration of a graph. In-situ algorithms for sorting or reversing a
list also require such capabilities.

Thus we propose to consider more expressive rewrite rules, able, not only to
create new terms, but also to physically modify a term by redirecting some of
the “edges” occurring in it. For instance, the rule ρ2 can be replaced by a rule
(ρ′2 below) redirecting the tail of the list cons(y, l) to the list add last(x, l). The
expression add last(x, l) is obtained itself by redirecting the second argument of
add last in add last(x, cons(y, l)) to l. Then no new term is created (except for
the last element). This rule can be written as follows (the formal definition of
the graphs and rules will be given in Sections 2 and 3).

β:add last(x, α:cons(y, l))→ β 12 l (ρ′2).
β 12 l denotes an action which redirects the second argument of β to l. The

node β is reused in the right-hand side in order to avoid creating new cells. Note
that such rewrite rules are expressive enough to create shared or cyclic data-
structures. For instance, the action α 12 α creates a cyclic list α:cons(y, α) of
length 1.

In this paper, we investigate a class of rewrite rules having the following
properties. First we handle data-structures that are more complex than standard
terms, corresponding to a particular class of graphs (see Section 2). Note that
this is not really important by itself, since such data-structures could be in
principle encoded into terms (possibly using built-in functions). This should be
considered in connection with the second point. Second, we introduce a language
able to express all basic transformations on such data-structures, including node
relabeling, edge (pointer) redirection and global redirection1. The right-hand
sides of the rules we consider in this paper are defined as sequences of elementary
actions. These actions, such as (re)definition of nodes, global or local redirection
of edges/pointers, contribute to rewrite a graph stepwise. These systems are thus
different from classical term graph rewriting systems such as [12,4].

In [3] graph grammars operating on data-structures with pointers have been
proposed as a means to recognize shapes of data-structures with pointers. That
is to say, given a graph G representing a data structure, one may use a graph
grammar to solve the word problem by answering whether or not G belongs to
a set of graphs having a common shape. The class of graph rewrite rules we
investigate in the present paper can also be used to recognize shapes of data-
structures. However, we will rather focus on the computational aspects related
to the proposed rewrite system instead of focusing on some applications such as
shape recognition.

Our language is a conservative extension of term rewrite rules. However, since
our rewrite rules are more “expressive” than usual ones, confluence is obviously
much more difficult to ensure. Assume for instance that we want to normalize the
following term-graph: (α, β) where α, β are defined as follows: α:add last(0, δ),
β:add last(1, δ), where δ:cons(2,nil). Then the normal form of the graph depends

1 This last transformation consists in redirecting all the edges pointing to a given node
to another node in the graph. It is needed to express collapsing rules, for instance
cdr(cons(x, l)) → l: any edge pointing to cdr(cons(x, l)) should be redirected to l.
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on the order in which the nodes are reduced. The resulting list is either cons
(2, cons(0, cons(1,nil))) (if α is reduced first), or cons(2, cons(1, cons(0,nil))) (if
β is reduced first).

The property of confluence is essential when rewrite rules are used to define
functions. It ensures the uniqueness of normal forms and allows for more efficient
rewrite strategies (since one does not have to explore all possible derivations).
Unfortunately, this property turns out to be hard to satisfy for graph rewrite
systems see e.g., [13,2,11]. In order to overcome this problem, we propose to as-
sociate each graph to a priority ordering (chosen by the programmer) between
the (non constructor) nodes, expressing the order in which the nodes should be
reduced – thus enforcing confluence. However, it is not always necessary to order
all the nodes. If, for instance, the function add last is applied to two lists l, l′ shar-
ing no nodes, then it is clear that the two corresponding terms can be evaluated
in any order, since their executions do not interfere. If standard rewrite rules are
considered then arbitrary rewrite strategies should be possible (all nodes can be
reduced as soon as possible). This raises the following issue: How can we decide
which nodes should be ordered ?

In [5] we made a first attempt to ensure unique normal forms by ordering any
two reducible positions which may produce side-effects (e.g., edge redirections).
However, these orderings are too restrictive and prevent in general to perform
efficient evaluation strategies. We propose here more refined orderings over nodes
which allow us to retrieve the efficiency of lazy strategies whenever it is possible
such as the optimal strategy defined in [8]. These orderings take into account
not only the functions labeling the nodes, but also the dependencies between the
nodes. These priorities over nodes are characterized in an abstract way, we call
dependency schemata. Several orderings can fulfill such schemata. We provide in
addition an actual procedure to define such refined orderings. To our knowledge,
there is no similar result in the literature which computes dynamically a set of
positions which may be candidate to be reducible without loosing confluence.
The computation of such a set of positions is different from expressing strategies
as in [15,6] or computing needed positions as in [10].

Before giving any technical definition, we would like to provide an informal
overview of our approach (the reader can refer to Section 2.1 for the notations).

Strict Rewriting. First, we assume given a total ordering, denoted by 2, on
the nodes (Section 3). Since the ordering is total, the corresponding derivations
are purely deterministic (if the rewrite rules are orthogonal). Thus the normal
forms are unique. This is useful for defining the semantics of a set of rules, but
this is not satisfactory from a programming point of view, because it prevents
us from using efficient, lazy, rewriting strategies, or parallelism.

For instance, given a rule α:(β:0 × γ) → α:0, and a term t = (β:0) × s,
where the nodes in s are of highest priority than β (and not connected to β),
one would have to evaluate the term s before finding the value of t, although
obviously the value of t is always 0. Clearly, this is inefficient, since s may be
arbitrarily complex. Even worse, the evaluation of s may not terminate which
entails that t itself may be non normalizable. We have here a similar behavior



140 R. Echahed and N. Peltier

of innermost term rewriting w.r.t. lazy (outermost) term rewriting. Thus, more
flexible rewrite strategies are needed.

Non Strict Rewriting. We define relaxed, flexible rewrite strategies with the
following properties: confluence is preserved, which implies that the computed
normal forms are the same as the ones computed by strict rewriting (i.e. the
semantics of the rules, as defined by strict rewriting, is preserved), but at the
same time, shorter derivations can be obtained, by skipping some useless rewrite
steps.

The general idea is the following. We allow to apply a given rule ρ on a node
β, even if it is not the one with highest priority, if the two following properties
can be ensured: (i) The left-hand side of ρ does not contain any node that is
affected (i.e. redirected or relabeled) during the normalization of the nodes α s.t.
α 2 β; and (ii) ρ does not affect a node which is “reachable”2 from a node α
s.t. α 2 β. However, it is not always easy to check whether the normalization of
a given subgraph affects or not another subpart of the term-graph. For example,
in the example above, the evaluation of s may affect α: assume for instance that
s = g(β), where g is defined by the rule α:g(β:0) → α:2, β:1 (g returns 2 and
changes the label of its argument to 1). Then t = (β:0)× g(β) may be rewritten
to (1 × 2).

These properties are undecidable in general, thus we approximate them using
tractable criteria (Section 4).

An Illustrating Example. We give an example illustrating the differences
between the two kinds of rewriting. This example is intended to give an intuition
of what we want to achieve, and to demonstrate the interest of the strategy we
introduce in the paper.

�

α:add last

�

β:add last

� �

δ:nth

�

� �
nil

��

�

γ:1

ζ:0

μ:cons s(s(0))

μ′:cons

Assume that we want to normalize the above term-graph, where the priority
ordering is defined as follows: α 2 β 2 δ. We want to compute the value of δ.

This term-graph can be described linearly as follows (see Section 2.1 for de-
tails): α:add last(γ:1, μ:cons(ζ:0, μ′:cons(ζ, η:nil))) ⊕ β:add last(γ, μ) ⊕ δ:nth(μ,
s(s(0))). The function nth (nth element in a list) is defined as usual by the
following rules π1 and π2.
nth(cons(x, l), s(0))→ x (π1) nth(cons(x, l), s(s(n))) → nth(l, s(n)) (π2)

Strict rewriting would first reduce the node α yielding eventually:

2 In a sense to be specified: it is not sufficient to explore the current graph, because
the node may become reachable after some rule application.
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β:add last(γ:1, μ:cons(ζ:0, cons(ζ, cons(γ, η:nil))) ⊕ δ:nth(μ, s(s(0))).
Then the node β will be reduced, which produces:

δ:nth(μ:cons(ζ:0, μ′:cons(ζ, cons(γ:1, cons(γ, η:nil)))), s(s(0))).
Afterwards, the function nth will be applied, yielding ζ:0. The rewrite strategy

described in [5] would yield the same derivation.
Now, let us see what happens when applying the more flexible strategy devel-

oped in this paper. Initially, we still have to rewrite α. Indeed, it is the node with
highest priority. Moreover, it may affect the node μ, which is reachable from δ.
Note that the rule π2 could be applied in principle on δ (it matches the graph at
node δ), but is blocked at this point by the ordering, indeed, it applies to a part
of the graph that contains a node μ that is reachable from two nodes α, β which
may perform “side-effects” (i.e. may physically affect their arguments). Thus
rewriting δ at this point is “unsound” (w.r.t. the semantics defined by the order-
ing 2 on nodes) because μ could be relabeled or redirected when normalizing α
or β. Thus we apply the rule ρ′2 on α. The term-graph becomes:
α:add last(γ:1, μ′:cons(ζ:0, η:nil))⊕ β:add last(γ, μ:cons(ζ, μ′))⊕ δ:nth(μ, s(s(0))).

However, we do not need to rewrite α again. Indeed, the rule ρ′2 is
applicable on β and the part of the graph on which it applies is not affected
by α (formal criteria will be given later). Moreover, this rule does not affect
the nodes reachable from α. Thus conditions (i) and (ii) are satisfied and we
can delay the reduction of α (lazy rewriting) and apply instead ρ′2 on β (even
if α 2 β). We obtain: α:add last(γ:1, μ′:cons(ζ:0, η:nil)) ⊕ β:add last(γ, μ′) ⊕
δ:nth(μ:cons(ζ, μ′), s(s(0))).

At this point, we can apply the rule π2. Indeed, it affects no node (no side-
effect) and it applies on a part of the graph that is not reachable from α or
β any more. This yields: α:add last(γ:1, μ′:cons(ζ:0, η:nil)) ⊕ β:add last(γ, μ′)⊕
δ:nth(μ′, s(0)).

Now, we have no other choice than applying ρ′2 on α (this is the only applicable
rule) and get: α:add last(γ:1, η:nil)⊕β:add last(γ, μ′:cons(ζ:0, η))⊕δ:nth(μ′, s(0)).
Then, again, we can delay the reduction of α and reduce β instead. This yields:
α:add last(γ:1, η:nil)⊕ β:add last(γ, η)⊕ δ:nth(μ′:cons(ζ:0, η), s(0)).

At this point, we do not need to reduce α or β. We can directly apply the
rule π1 on δ, which gives the result 0. Afterwards, the remaining nodes can be
deleted (see Section 5).

Due to space restrictions, the proofs are not included.

2 Basic Definitions

2.1 Term-Graphs

The class of term-graphs3 we consider in this paper is slightly different from
the one of our previous papers [5,9]. It is close to the formalism of Ψ -terms [1].
3 We use the word “term-graph” in this paper in order to emphasize the difference
between the considered data-structures and the graphs usually used in mathematics:
mainly, given a node α and a symbol a, there can be at most one edge starting from
α and labeled by a.
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We assume given a set of nodes N , a set of features F and a set of labels L. In
contrast to [5,9], our signature is constructor-based : L is divided into two disjoint
sets of symbols: a set D of defined symbols and a set C of constructors.

Nodes will be denoted by Greek letters, labels by f, g, . . . and features by
a, b, . . . Features may be seen as functions from N to N , or as edge labels.

We assume given an ordering 2 onN , called the priority ordering. It expresses
in which order the nodes should be reduced. Note that in contrast to [5], 2 is
assumed to be total.

Definition 1. A term-graph t is defined by:

– A set of nodes N (t) ⊆ N .
– A partial labeling function lt from N (t) to L. lt(α) denotes a symbol labeling

the node α.
– A function mapping each symbol a in F to a partial function at from N (t) to
N (t). If at(α) = β then we say that t contains an edge from α to β, labeled
by a.

A rooted term-graph is a term-graph associated with a distinguished node α,
called the root of t and denoted by root(t).

Let t, s be two term-graphs. We write t ⊆ s iff t is included in s i.e. iff N (t) ⊆
N (s) and the functions lt and at (for any a ∈ F) are restrictions of ls and as

respectively.

A Linear Notation for Term-Graphs. We introduce a linear notation for
denoting term-graphs, which is close to the one used for terms (and Ψ -terms [1])
and more convenient to use than the above definition.

If t1, . . . , tn are rooted term-graphs, we denote by α:f(a1 ⇒ t1, . . . , an ⇒ tn)
the minimal term-graph t (if it exists) containing the term-graphs t1, . . . , tn, the
node α and such that lt(α) = f , and for all i ∈ [1..n], (ai)t(α) = root(ti)4. t⊕ s
denotes the union of t and s (if it exists).
α can be left unspecified, in the case it is simply replaced by an arbitrary node

not occurring elsewhere. f(t1, . . . , tn) is syntactic sugar for f(1 ⇒ t1, . . . , n ⇒
tn).

A difference with the definition used, e. g., in [5,9] is that we do not need to
define simultaneously all the “arguments” (i.e. the features) of a given node. For
instance, f(2 ⇒ b) denotes a term in which the second argument is b and the
first one is undefined.

Additional conditions can be added in order to ensure that the term-graphs are
well-formed (for instance that the arities of the function symbols are respected).
We also assume in the paper that the rewrite rules preserve well-formedness.
This problem is obviously undecidable in general, thus appropriate syntactic
restrictions should be added on the rewrite rules (for instance, if we do not want
to consider undefined features, then only the nodes that are globally redirected
4 Note that t does not necessarily exists since some of the nodes may be redefined. For
instance, α:f(a ⇒ β:0, b ⇒ β:1) contains two contradictory labelings of the node β.
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should be deleted). We do not consider this issue in the present paper, because
the notion of well-formedness strongly depends on the considered application.

2.2 N -Mappings

An N -mapping is a total function from N to N . An N -mapping σ is said to be
compatible with a term-graph t if for all α, β ∈ N (t) s.t. σ(α) = σ(β), the two
following conditions hold:

– If lt(α) and lt(β) are defined then we have lt(α) = lt(β).
– for all a ∈ F s.t. at(α) and at(β) are defined, then σ(at(α)) = σ(at(β)).

Then σ(t) denotes the term-graph s defined as follows: N (s) def= {σ(α) | α ∈
N (t)}, ls(σ(α)) def= lt(α) and as(σ(α)) def= σ(at(α)).

An N -mapping σ is said to be a renaming for a term-graph t if σ is injective
and if for any pair of node α, β occurring in t, α 2 β ⇒ σ(α) 2 σ(β). Note that
by definition any renaming for t is compatible with t.

An N -relation � is a function mapping any term-graph t to a relation �t on
the nodes in t s.t. for any renaming η and for any pair of nodes α, β occurring
in t we have α �t β iff η(α) �η(t) η(β).

One of the simplest examples of anN -relation is the relation→t defined as the
smallest reflexive and transitive relation s.t. (α ∈ N (t) ∧ at(α) = β) ⇒ α →t β
(informally α→t β means that there is a path from α to β in t).

2.3 Actions

The definitions of actions and rewriting rules are close to the ones of [9]. An
action is one of the following forms:

– a node relabeling α:f where α is a node and f is a label. This means that
α is (re)labeled by f .

– an edge redirection α 1a β where α, β are nodes and a is a feature.
This means that the value of a(α) is changed to β. This may be seen as an
edge redirection: the target of the edge starting from α and labeled by a is
redirected to point to β. The edge is created if it does not exist.

– a global redirection α1 β where α and β are nodes. This means that all
edges pointing to α are redirected to β.

– a node deletion α where α is a node.
– an edge deletion αa where α is a node and a is a feature.

The result of applying an action ε to a term-graph t is denoted by ε[t] and is
defined as the following term-graph s:

– If ε = α:f then N (s) def= N (t) ∪ {α}, ls(α) def= f , ls(β) def= lt(β) if β �= α, and
for any feature a, as

def= at. ∪ denotes classical union.
– If ε = α 1a β then N (s) def= N (t) ∪ {α, β}, ls def= lt, as(α) def= β and for any

feature b and any node γ we have bs(γ)
def= bt(γ) iff a �= b or γ �= α.
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– If ε = α1 β, then N (s) def= N (t)∪ {α, β}, ls def= lt, and for any feature a and
any node γ, as(γ)

def= β if at(γ) = α and as(γ)
def= at(γ) otherwise.

– If ε = α, then N (s) def= N (t)\{α}, and for any node β �= α, ls(β) def= lt(β) and
for any feature a, as(β) def= at(β) if at(β) �= α (as(β) is undefined otherwise).

– If ε = αa then N (s) def= N (t) ∪ {α}, ls def= lt and for any feature b and any
node γ we have bs(γ)

def= bt(γ) iff a �= b or γ �= α.

ς[t] is defined inductively as follows: ς[t] def= t if ς is empty and (ε.ς)[t] def= ς[ε[t]]
(where ε is an action and . denotes the sequential operator).

Example 1. Let t = α:f(β:a, γ:g(β), α). We have:
(α:h.γ:f)[t] = α:h(β:a, γ:f(β), α), (α11 γ)[t] = α:f(γ:g(β:a), γ, α) and (β 1

γ)[t] = α:f(γ:g(γ), γ, α).

3 Term-Graph Rewriting

Definition 2. A node constraint is a (possibly empty) conjunction of disequa-
tions between nodes:

∧n
i=1(αi � .= βi). An N -mapping σ is a solution of a con-

straint φ =
∧n

i=1(αi � .= βi) iff for any i ∈ [1..n], we have σ(αi) �= σ(βi). We
denote by sol(φ) the set of solutions of φ.

Definition 3. (Rewrite Rule) A (constrained) term-graph rewrite rule is an
expression of the form [L → R | φ] where R is a sequence of actions, φ is a
constraint and L is a rooted term-graph s.t.:

– for any node α occurring in L, we have root(L)→L α (i.e. any node occur-
ring in the left-hand side must be reachable from the root5).

– R contains at most one global redirection, which is of the form root(L)1 β
(only the root may be globally redirected).

– We have lL(root(L)) ∈ D and for any node α �= root(L) if lL(α) is defined
then lL(α) ∈ C (the root is the only node in L that is labeled by a defined
symbol).

A rewrite system is a set of rewrite rules.

Example 2. The following rules physically reverse a list (i.e. without creating
new cells). A list is represented by a term labeled by cons or nil, with two
features car (current element) and cdr (the tail).

The first rule replaces a term-graph rev(β) by aux(β,nil), where nil is a new
node. aux denotes an auxiliary function, which reverses its first argument and
(physically) appends it to the second list.

α:rev(β) → α:aux . α12 γ . γ:nil.

5 This is an important condition since otherwise the same rule could be applied in
several different ways at the same node.
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The last two rules are applied to term-graphs of the form α:aux(β, γ). The
second rule handles the case where β is nil. In this case, the result is γ, thus the
node α is globally redirected to γ. Note that global redirections are essential for
defining such rules. Afterwards, the node α can be deleted (α).

α:aux(β:nil, γ)→ (α1 γ) . α.
The last rule (inductive case) handles the case where β is of the form cons

(car ⇒ λ, cdr ⇒ δ). Then the following actions are performed: the tail (cdr) of
β is directed to γ, and the function aux is called on δ, β.

α:aux(β:cons(car ⇒ λ, cdr ⇒ δ), γ)→ (β 1cdr γ) . (α11 δ) . (α12 β).

Definition 4. Let ρ : [L→ R | φ] be a rule. A ρ-matcher for a term-graph t ( at
a node α ∈ N (t)) is an N -mapping σ compatible with L satisfying the following
conditions.

1. σ is a solution of φ.
2. σ(L) ⊆ t.
3. α = σ(root(L)).
4. Let N be the set of nodes occurring in R but not in L. σ maps the nodes in
N to pairwise distinct nodes not occurring in t s.t.:
– If β, γ are two nodes in N s.t. β 2 γ then σ(β) 2 σ(γ).
– For any node β occurring in t, and for any node γ in N , β ≺ σ(γ) iff
β ≺ α or β = α.

The first three conditions are natural. They express the fact that σ(L) is a
term-graph included in t, of root α, and that σ satisfies the constraint of the rule.
The last condition states that the “extra” nodes, i.e. the nodes that occur in the
right-hand side but not in the left-hand side should be mapped to new – pairwise
distinct – nodes. This is very natural, since they correspond to nodes that are
“created” by the rule application. The condition also specifies how those new
nodes are ordered with respect to the nodes already existing in the term-graph:
roughly speaking, those nodes “inherit” the priority of the parent node α.

If σ is a ρ-matcher for t at α then we denote by ρσ[t] the term-graph s
s.t. s = σ(R)[t]. Obviously, ρ-matchers can be easily computed using standard
matching algorithms.

We write t �→(ρ,σ) s if s = ρσ[t] and if the two following conditions are satisfied.

– For each node α � σ(root(L)) occurring in t we have lt(α) ∈ C. This means
that the rules are applied only on maximal reducible nodes (according to the
ordering 2).

– For any node α occurring in L, if lL(α) is undefined then lt(σ(α)) �∈ D. This
means that the variable nodes occurring in L cannot be labeled by a defined
symbol6.

6 This condition is essential for avoiding cycles in global redirections: for instance if
the rules α:f(β) → α � β and α:g(β) → α � β are applied on γ:f(g(γ)). Without
the above condition we could obtain two distinct normal forms γ:f(γ) and γ:g(γ).
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These conditions specify the rewrite strategy. This strategy is very restrictive
and it should be clear that it is not intended to be used in practice for normalizing
term-graphs. It is useful only to specify the semantics of the rules.

We write t �→ρ s if t �→(ρ,σ) s for some ρ-matcher σ. We write t �→R s if t �→ρ s
for some rule ρ ∈ R. This relation is called strict rewriting. One can view strict
rewrite systems as purely “imperative” programs, in the sense that the order in
which the actions are performed is entirely specified.

As explained in the introduction, we now introduce more flexible, non deter-
ministic strategies that can be more efficient than strict rewriting, but in the
same time compute the same normal forms (confluence is preserved).

The basic idea is that a rule ρ may be applied on a non-maximal node α only
if ρ does not interfere with the reduction of the nodes β � α, i.e. if the execution
of ρ affects no node on which the functions labeling the nodes β � α operate,
and if the left-hand side of ρ cannot be modified during the normalization of
the nodes β � α. Thus we need a way to determine (in a purely automatic
and efficient way) which are the nodes that are affected by the normalization
of a given node. However, this problem is clearly undecidable. Thus we need to
formulate necessary, tractable, conditions.

We need to introduce some technical definitions. A node α is said to be defined
in a term-graph t if either lt(α) is defined (i.e. α has a label) or if there exists a
feature a s.t. at(α) is defined (i.e. there is an edge starting from α). Non-defined
nodes may be viewed as “variables”.

Let ς be a sequence of actions. We say that ς redirects α if ς contains an action
of the form α1 β. We say that ς affects a node α if either it redirects α or if ς
contains an action of the form α:f or α 1a β or α or αa. This means that the
application of ς either changes the label of the node α, or redirects/deletes an
edge starting from α or deletes α.

Let t be a term-graph. We define the following relations between nodes:

– α >t β iff there is a rule ρ : [L → R | φ] ∈ R and a ρ-matcher σ at α s.t. β
is defined in σ(L). This means that a rule that can be applied on α depends
on the definition of the node β.

– α ⇒t β iff there is a rule ρ : [L → R | φ] ∈ R and a ρ-matcher σ at α s.t.
σ(R) affects β. This means that a rule affecting β can be applied on α.

– α �t β iff there is a rule ρ : [L → R | φ] ∈ R and a ρ-matcher σ at α s.t.
σ(R) redirects β. This means that a rule redirecting β can be applied on α.

– α 	t β iff there is a rule ρ : [L → R | φ] ∈ R and a ρ-matcher σ at α s.t. β
occurs in σ(φ). This means that a rule that can be applied on α depends on
the name of β7.

Definition 5. Let R be a set of rewriting rules. An R-dependency schema is a
triple ξ = (⇒ξ,�ξ, >ξ) of N -relations, s.t. ⇒ξ

t ,�ξ
t , >

ξ
t contains ⇒t,�t and >t

7 Due to the expressive power of constraints and of the possibility of global redi-
rections, some of the rules may depend not only on the labels or edges occurring
in a term-graph, but also on the names of the nodes (for instance if we write a
function checking whether two nodes are physically equal: β:eq(α, α) → β:true and
[β:eq(α, β) → β:false | α � .= β]).



Non Strict Confluent Rewrite Systems for Data-Structures with Pointers 147

respectively. We write α ��ξ
t β if there exists a node γ s.t. one of the following

conditions holds:

α⇒t γ and β >ξ
t γ or α >t γ and β ⇒ξ

t γ

α 	t γ and β �ξ
t γ or α �t γ and β >ξ

t γ

Informally, these relations are intended to capture the following properties:

– α �>ξ
t β means that the value of the node α (i.e. the term-graphs obtained

after normalization) does not depend on the node β.
– α �⇒ξ

t β means that the node β is not affected by the normalization of α.
– α ��ξ

t β means that the node β is not redirected by the normalization of α.

Thus, α ��ξ
t β expresses the fact that there is a potential “conflict” between

α, β (according to the considered dependency schema) which entails that these
nodes should be ordered according to 2 in the rewriting process. For instance,
the condition “α ⇒t γ and β >ξ

t γ”, states that a rule is applicable on α that
affects a node γ on which β possibly depends. Similarly, the condition “α >t γ
and β ⇒ξ

t γ” states that a rule can be applied on a node α, on a part of the
term-graph containing a node γ which may be affected by β.

It should be intuitively clear that one of the conditions in the definition of
�� must be satisfied if the rule currently applicable on α “interferes” with the
normalization of the node β.

Each dependency schema can be associated to a (non strict) rewriting relation:

Definition 6. A ρ-matcher σ for t at a node α is said to be eligible w.r.t. an
R-dependency schema ξ if:

– for any node β s.t. α ��ξ
t β, we have α 2 β.

– for any node β �= α occurring in σ(L), we have either β � α or lt(β) �∈ D.

Definition 7. (Non Strict Rewriting) Let R be a set of rewrite rules and let
ξ = (⇒ξ,�ξ, >ξ) be an R-dependency schema.

If σ is a ρ-matcher for t then we write t
ξ→(ρ,σ) s if s = ρσ[t] and σ is eligible

in t w.r.t. ξ.
We write t

ξ→ρ s if t
ξ→(ρ,σ) s for some ρ-matcher σ and t

ξ→Rs iff t
ξ→ρ s for

some ρ ∈ R.

In particular, strict rewriting can be considered as a particular case of non strict
rewriting (using a dependency schema ξ s.t. all the relations in ξ contain all the
pairs of nodes in the term-graph). The next lemma shows that this rewriting
relation is compatible with term-graph renaming.

Lemma 1. Let R be a set of rewrite rules and let ξ = (⇒ξ,�ξ, >ξ) be an
R-dependency schema.

Let ρ ∈ R. Let t, s be two term-graphs and let η be a renaming for s. Assume
that t

ξ→(ρ,σ) s. Then η(t)
ξ→(ρ,η◦σ) η(s).
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Several distinct rewriting relations can be defined, by choosing different R-
dependency schemata. The next definition states some semantic criteria on the
dependency schema ensuring confluence of the corresponding rewriting relation.

Definition 8. An N -relation � is said to be invariant for an R-dependency
schema ξ if the following holds: if σ is a ρ-matcher for t at a node α, and if
t

ξ→(ρ,σ) s, β �s γ then either β �t γ or β �∈ N (t) and α �t γ. An R-dependency
schema ξ = (⇒ξ,�ξ, >ξ) is invariant if ⇒ξ,�ξ, >ξ are invariant for ξ.

The next technical lemma can be considered as the key result of the present
paper. It shows in some sense that two eligible matchers necessarily commute if
the dependency schema is invariant. This is essential for proving confluence.

Lemma 2. Let R be a set of rewrite rules and let ξ = (⇒ξ,�ξ, >ξ) be an
invariant R-dependency schema. Let ρ, ρ′ be two rules in R. Let t be a term-
graph. Assume that there exist two eligible disjoint matchers θ, σ for t at two
nodes α, β and two rules ρ, ρ′ respectively.

Then there exists an eligible ρ′-matcher σ′ for ρθ[t] and an eligible ρ-matcher
θ′ for ρ′σ[t] s.t. ρ′σ

′
[ρθ[t]] = ρθ′

[ρ′σ[t]].

Confluence is an essential property from a programming point of view, be-
cause it ensures that any object has a unique normal form. Thus no backtracking
is needed during rewriting. As in [5], confluence is defined modulo renaming.

We write t ≡N s iff there exists a renaming η for t s.t. η(t) = s and η is the
identity on N . ≡ denotes the relation ≡∅. Informally, t ≡ s states that t, s are
identical (isomorphic) up to a renaming of nodes.

Definition 9. A rewrite system is said to be weak orthogonal if for any pair of
rules ρ : [L → R | φ], π : [L′ → R′ | φ′], and for any N -mapping σ ∈ sol(φ) ∩
sol(φ′) compatible with L,L′ s.t. σ(root(L)) = σ(root(L′)), we have σ(R) ≡N

σ(R′), where N denotes the nodes occurring in σ(L) and σ(L′).

Theorem 1. (Confluence of Weak Orthogonal Systems) Let R be a weak orthog-

onal rewrite system. Let ξ be an R-dependency schema.
ξ→R∪ ≡ is confluent.

As an immediate corollary, we derive the soundness of the non strict rewriting
relation

ξ→R with respect to strict rewriting:

Corollary 1. Let R be a weak orthogonal rewrite system. Let ξ be an
R-dependency schema. If t

ξ→Rs, t
�→R s′ and if s′ contains no defined func-

tion, then s = s′.

4 Computing R-Dependency Schemata

The criteria defined in Section 3 are purely semantic (see Definition 8). In order to

make the relation
ξ→R computable, we have to specify how to compute effectively
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the relations ⇒ξ
t ,�ξ

t , >
ξ
t in such a way that ξ = (⇒ξ

t ,�ξ
t , >

ξ
t ) satisfies the

conditions of Definitions 5 and 8. This is done in the present section.
We need to introduce additional definitions. Let f be a function symbol. An

f -rule is a rule [L→ R | φ] s.t. lL(root(L)) = f .
If R is a rewrite system, ≥R denotes the smallest reflexive and transitive

relation s.t. f ≥R g if an action β:g occurs in the right hand side of an f -rule.
Intuitively, f ≥R g if g may be “called” during the evaluation of f .

If R is a rewrite system, ≥r
R denotes the smallest reflexive and transitive

relation s.t. f ≥r
R g if there exists an f -rule [L → R | φ] s.t. root(L):g ∈ R.

f ≥r
R g if g is called during the evaluation of f on the same node as f .

Let R be a set of rewrite rules. A rule [L → R | φ] is said to produce a
side-effect if R affects a node α occurring in L but distinct from root(L) and to
perform a global redirection if R contains a global redirection.

The set SER (resp. RDR) is the smallest set of function symbols containing
any function symbol f s.t. there exists an f -rule producing a side-effect (resp. a
global redirection) and s.t. f ∈ SER and g ≥R f then g ∈ SER (resp. f ∈ RDR
and g ≥r

R f then g ∈ RDR). We denote by SER(t) (resp. RDR(t)) the set of
nodes α s.t. lt(α) ∈ SER (resp. lt(α) ∈ RDR).

Now we define our proposed dependency schema. We denote by ξR the func-
tion mapping each term-graph t to a tuple (⇒ξ

t ,�
ξ
t , >

ξ
t ). s.t.:

– α >ξ
t β iff α →t β or there exists two nodes γ, δ s.t. δ 2 α, α >ξ

t γ, δ >
ξ
t γ,

δ ∈ SER(t) and δ >ξ
t β. Informally, α depends on β if either β is reachable

from α or if β may become reachable from α at some point, i.e. if there exists
a node in the term-graph that can construct a “link” between α and β.

– α⇒ξ
t β iff α ∈ SER(t) and α >ξ

t β. α affects β if α depends on β and if the
function labeling α may perform side effects.

– α �ξ
t β iff α = β and α ∈ RDR(t). α redirects β if β is α and if the function

labeling α performs a global redirection.

Clearly, these relations are easy to compute. The next lemma shows that they
satisfy the desired properties.

Lemma 3. Let R be a rewrite system. ξR is an invariant R-dependency schema.

In particular, the derivation given in the Introduction can be constructed
using ξR. We give another example:

Example 3.
α:f(β:0, γ)→ α:d, β:1 (ρ1)
α:g(β, γ)→ α:d (ρ2)
α:h(β, γ)→ α:g, α11 γ, α12 β (ρ3)

We consider the rules above and the term-graph: t = c(μ1:f(ζ1:0, ζ2:1), μ2:g(ζ2,
ζ3:2), μ3:h(ζ3, ζ4:3)). We assume that μ1 2 μ2 2 μ3. Then strict rewriting gives:
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t
�→ρ1 c(μ1:d(ζ1:1, ζ2:1), μ2:g(ζ2, ζ3:2), μ3:h(ζ3, ζ4:3))
�→ρ2 c(d(ζ1:1, ζ2:1), d(ζ2, ζ3:2), μ3:h(ζ3, ζ4:3))
�→ρ3 c(d(ζ1:1, ζ2:1), d(ζ2, ζ3:2), μ3:g(ζ4:3, ζ3))
�→ρ2 c(d(ζ1:1, ζ2:1), d(ζ2, ζ3:2), d(ζ4:3, ζ3)).

Now, let us apply our non strict strategy, defined by the above R-dependency
schema ξR. Here SER = {f} and RDR = ∅.

Since μ1 is labeled by a function f in SER and since there exists a node ζ2
s.t. μ1 →t ζ2, μ2 →t ζ2, we have μ1 ��ξR

t μ2. Thus μ1 must be normalized before
μ2.

But on the other hand, there is no node λ s.t. μ1 >
ξ
t λ and μ3 >

ξ
t λ. Indeed,

the only node λ s.t. μ1 >
ξ
t λ are ζ1, ζ2 and the only node λ s.t. μ3 >

ξ
t λ are

ζ3, ζ4 (this follows immediately from the above definition8). Hence μ1, μ3 can be
normalized in arbitrary order. Thus we could reduce for instance the nodes in
one of these orderings: μ1, μ3, μ2 or μ3, μ1, μ2.

If R is a term rewrite system (in the usual sense) then R affects no node distinct
from α and the constraint part of the nodes are empty. Thus we have α �⇒ξ

t β
and α �	t β if α �= β. Therefore any ρ-matcher is eligible and our “flexible”
rewriting relation coincides with the usual term rewriting relation.

5 Implicit Deletion of Nodes (Garbage Collection)

Node deletions can be explicitly declared by the programmer as we have seen
in Section 2.3. But it is also useful to have a way of deleting (automatically)
“useless” nodes, i.e. nodes that are not needed for finding the normal form of
a given term-graph. Of course this can be done safely only if we are interested
by the part of the term-graph that is reachable from its root (this is usually the
case in practice). In this case we can delete the nodes that are not “connected”
to the root (in some sense to be defined). The next definition formalizes this.

Definition 10. Let R be a rewrite system. Let ξ be an R-dependency schema.
Let t be a rooted term-graph. The set of useful nodes is inductively defined as
follows: α is useful if either root(t) →t α or if there exists a node β ∈ SER(t)
and a useful node γ s.t. β →t α and β →t γ.

If t is a term-graph, we write t 
 s if s is obtained from t by removing useless

nodes. We denote by
ξ

R the relation

ξ→R∪ 
 ∪ ≡.

The next lemma states the soundness of this transformation w.r.t. rewriting.

Lemma 4. Let R be a rewrite system and let ξ be an R-dependency schema.
ξ

R is confluent.

Corollary 2. Let t be a rooted term-graph. If t
ξ

Rs, then t

ξ→Rs
′, for some

s′ 
 s.
8 Note that we have μ2 >ξ

t ζ1.
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6 Conclusion

Our contribution was twofold:
We introduced a conservative extension of term rewrite rules, operating on

complex data-structures. This allows one to specify – in an abstract way – algo-
rithms that may handle pointers. This significantly enlarges the scope of declar-
ative languages. Since these rules are not confluent in general, their application
is controlled by a priority ordering between the nodes.

Then we showed how to define more efficient, non deterministic strategies
(including a form of garbage collection). This is done by carefully inspecting the
dependencies between the nodes. Such strategies are useful because they skip
some useless steps and yield shorter derivations. We showed the confluence of
these strategies and their soundness w.r.t. the above priority ordering.

We would like to emphasize the fact that the concrete dependency schema pre-
sented in Section 4 is given only as an example. Other, refined relations could be
defined instead (provided they fulfill the semantic conditions of Section 3).

The natural continuation of our work is to design needed rewrite strategies
(i.e. strategies in which all rewriting steps are needed to find the normal form
[10]). Of course, we will need to impose additional restrictions on the considered
rules (as it is done for term rewrite rules). Other, more refined, dependency
schemata could also be developed (yielding more efficient rewrite strategies).
For instance, one could take into account the specific features on which a given
function performs a side-effect.
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Abstract. Rewriting is a general and expressive way of specifying con-
current systems, where concurrent transitions are axiomatized by rewrite
rules. Narrowing is a complete symbolic method for model checking
reachability properties. We show that this method can be reinterpreted
as a lifting simulation relating the original system and the symbolic sys-
tem associated to the narrowing transitions. Since the narrowing graph
can be infinite, this lifting simulation only gives us a semi-decision pro-
cedure for the failure of invariants. However, we propose new methods
for folding the narrowing tree that can in practice result in finite sys-
tems that symbolically simulate the original system and can be used
to algorithmically verify its properties. We also show how both narrow-
ing and folding can be used to symbolically model check systems which,
in addition, have state predicates, and therefore correspond to Kripke
structures on which ACTL∗ and LTL formulas can be algorithmically
verified using such finite symbolic abstractions.

1 Introduction

Model checking techniques have proved enormously effective in verification of
concurrent systems. However, the standard model checking algorithms only work
when the set of states reachable from the given initial state is finite. Various
model checking techniques for infinite-state systems exist, but they are less de-
veloped than finite-state techniques and tend to place stronger limitations on
the kind of systems and/or the properties that can be model checked.

In this work we adopt the rewriting logic point of view, in which a concurrent
system can always be axiomatized as a rewrite theory modulo some equational
axioms, with system transitions described by rewrite rules. We then propose a
new narrowing-based method for model checking such, possibly infinite-state,
systems under reasonable assumptions. The key insight is that the well-known
theorem on the completeness of narrowing (which for rewrite theories whose rules
need not be convergent have to satisfy a topmost restriction) can be reinterpreted
as a lifting simulation between two systems, namely, between the initial model
associated to the rewrite theory (which describes our system of interest), and a
“symbolic abstraction” of such a system by the narrowing relation.
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The narrowing relation itself may still lead to an infinite-state system. Even
then, narrowing already gives us a semi-decision procedure for finding failures of
invariants. To obtain a finite-state abstraction, we then define a second simula-
tion by folding the narrowing-based abstraction, using a generalization criterion
to fold the possibly infinite narrowing tree into a finite graph. There is no guar-
antee that such a folding will always be finite. But we think that such foldings
can be finite in many practical cases and give several examples of finite concur-
rent system abstractions of infinite systems that can be obtained in this way and
can be used to verify properties of infinite systems.

Our work applies not only to the model checking of invariants, but also to
the model checking of ACTL∗ and LTL temporal logic formulas; not just for
one initial state, but for a possibly infinite, symbolically described set of ini-
tial states. We therefore also provide results about the ACTL∗ and LTL model
checking of concurrent systems axiomatized as rewrite theories. For such tem-
poral logic model checking we have to perform narrowing in two different di-
mensions: (i) in the dimension of transitions, as already explained above; and
(ii) in the dimensions of state predicates, because they are not defined in general
for arbitrary terms with variables, but only for suitable substitution instances.
Again, our narrowing techniques, when successful in folding the system into a
finite-state abstraction, allow the use of standard model checking algorithms to
verify ACTL∗ and LTL properties of the corresponding infinite-state systems.

After some preliminaries in Section 2, we consider narrowing for model check-
ing invariants of transition systems in Section 3, and narrowing for model check-
ing temporal logic formulas on Kripke structures in Section 4. We conclude in
Section 5. Throughout we use Lamport’s infinite-state “bakery” protocol as the
source of various examples. Other examples based on a readers-writers protocol
and the proofs of all technical results are included in [16].

1.1 Related Work

The idea that narrowing in its reachability sense should be used as a method for
analyzing concurrent systems and should fit within a wider spectrum of analy-
sis capabilities, was suggested in [26,13], and was fully developed in [24]. The
application of this idea to the verification of cryptographic protocols has been
further developed by the authors in collaboration with Catherine Meadows and
has been used as the basis of the Maude-NPA protocol analyzer [15]. In relation
to such previous work, we contribute several new ideas, including the use of lift-
ing simulations, the folding of the narrowing graph by a generalization criterion,
and the new techniques for the verification of ACTL∗ and LTL properties.

The methods proposed in this paper are complementary to other infinite-
state model checking methods, of which narrowing is one. What narrowing has
in common with various infinite-state model checking analyses is the idea of
representing sets of states symbolically, and to perform reachability analysis
to verify properties. The symbolic representations vary from approach to ap-
proach. String and multiset grammars are often used to symbolically compute
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reachability sets, sometimes in conjunction with descriptions of the systems as
rewrite theories [5,4], and sometimes in conjunction with learning algorithms
[33]. Tree automata are also used for symbolic representation [19,30]. In general,
like narrowing, some of these methods are only semi-decision procedures; but by
restricting the classes of systems and/or the properties being analyzed, and by
sometimes using acceleration or learning techniques, actual algorithms can be
obtained for suitable subclasses: see the references above and also [6,7,14,18].

Two infinite-state model checking approaches closer in spirit to ours are: (i)
the “constraint-based multiset rewriting” of Delzanno [12,11], where the infin-
ity of a concurrent system is represented by the use of constraints (over integer
or real numbers) and reachability analysis is performed by rewriting with a
constraint store to which more constraints are added and checked for satisfia-
bility or failure; and (ii) the logic-programming approach of [3], where simula-
tions/bisimulations of labeled transition systems and symbolic representations
of them using terms with variables and logic programming are studied. In spite
of their similarities, the technical approaches taken in (i) and (ii) are quite dif-
ferent from ours. In (i), the analogue of narrowing is checking satisfiability of the
constraint store; whereas in (ii) the main focus is on analyzing process calculi
and on developing effective techniques using tabled logic programming to detect
when a simulation or bisimulation exists.

Our work is also related to abstraction techniques, e.g., [8,22,20,21,31], which
can sometimes collapse an infinite-state system into a finite-state one. In particu-
lar, it is related to, and complements, abstraction techniques for rewrite theories
such as [29,23,17]. In fact, all the simulations we propose, especially the ones in-
volving folding, can be viewed as suitable abstractions. From this point of view,
our results provide new methods for automatically defining correct abstractions
in a symbolic way. There is, finally, related work on computing finite represen-
tations of the search space associated by narrowing to an expression in a rewrite
theory, e.g., for computing regular expressions denoting a possibly infinite set
of unifiers in [2], or for partial evaluation in [1]. However, these works have a
different motivation and do not consider applications to simulation/bisimulation
issues, although they contain notions of correctness and completeness suitable
for such applications.

2 Preliminaries

We follow the classical notation and terminology from [32] for term rewriting and
from [25,27] for rewriting logic and order-sorted notions. We assume an order-
sorted signature Σ with a finite poset of sorts (S,≤) and a finite number of func-
tion symbols. We furthermore assume that: (i) each connected component in the
poset ordering has a top sort, and for each s ∈ S we denote by [s] the top sort in
the component of s; and (ii) for each operator declaration f : s1×. . .×sn → s inΣ,
there is also a declaration f : [s1]× . . .× [sn]→ [s]. We assume an S-sorted family
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X = {Xs}s∈S of disjoint variable sets with each Xs countably infinite. TΣ(X )s is
the set of terms of sort s, and TΣ,s is the set of ground terms of sort s. We write
TΣ(X ) and TΣ for the corresponding term algebras. The set of positions of a
term t is written Pos(t), and the set of non-variable positions PosΣ(t). The root
of a term is Λ. The subterm of t at position p is t|p and t[u]p is the subterm t|p
in t replaced by u. A substitution σ is a sorted mapping from a finite subset of
X , written Dom(σ), to TΣ(X ). The set of variables introduced by σ is Ran(σ).
The identity substitution is id. Substitutions are homomorphically extended to
TΣ(X ). The restriction of σ to a set of variables V is σ|V .

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X )s for some
sort s ∈ S. Given Σ and a set E of Σ-equations such that TΣ,s �= ∅ for every
sort s, order-sorted equational logic induces a congruence relation =E on terms
t, t′ ∈ TΣ(X ) (see [27]). Throughout this paper we assume that TΣ,s �= ∅ for every
sort s. The E-subsumption order on terms TΣ(X )s, written t �E t′ (meaning that
t′ is more general than t), holds if ∃σ : t =E σ(t′). The E-renaming equivalence
on terms TΣ(X )s, written t ≈E t′, holds if t �E t′ and t′ �E t. We extend =E ,
≈E , and �E to substitutions in the expected way. An E-unifier for a Σ-equation
t = t′ is a substitution σ s.t. σ(t) =E σ(t′). A complete set of E-unifiers of an
equation t = t′ is written CSUE(t = t′). We say CSUE(t = t′) is finitary if it
contains a finite number of E-unifiers. This notion can be extended to several
equations, written CSUE(t1 = t′1 ∧ · · · ∧ tn = t′n).

A rewrite rule is an oriented pair l → r, where l �∈ X and l, r ∈ TΣ(X )s
for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
R = (Σ,E,R) with Σ an order-sorted signature, E a set of Σ-equations, and
R a set of rewrite rules. A topmost rewrite theory is a rewrite theory s.t. for
each l → r ∈ R, l, r ∈ TΣ(X )State for a top sort State, r �∈ X , and no operator
in Σ has State as an argument sort. The rewriting relation →R on TΣ(X ) is
t

p→R t′ (or →R) if p ∈ PosΣ(t), l→ r ∈ R, t|p = σ(l), and t′ = t[σ(r)]p for some
σ. The relation →R/E on TΣ(X ) is =E ;→R; =E . Note that →R/E on TΣ(X )
induces a relation →R/E on TΣ/E(X ) by [t]E →R/E [t′]E iff t →R/E t′. When
R = (Σ,E,R) is a topmost rewrite theory we can safely restrict ourselves to the
rewriting relation →R,E on TΣ(X ), where t Λ→R,E t′ (or →R,E) if l → r ∈ R,
t =E σ(l), and t′ = σ(r). Note that →R,E on TΣ(X ) induces a relation →R,E

on TΣ/E(X ) by [t]E →R,E [t′]E iff ∃w ∈ TΣ(X ) s.t. t →R,E w and w =E t′.

The narrowing relation �R on TΣ(X ) is t
p,σ�R t′ (or σ�R, �R) if p ∈ PosΣ(t),

l→ r ∈ R, σ ∈ CSU∅(t|p = l), and t′ = σ(t[r]p). Assuming that E has a finitary
and complete unification algorithm, the narrowing relation �R,E on TΣ(X ) is
t

p,σ�R,E t′ (or σ�R,E , �R,E) if p ∈ PosΣ(t), l → r ∈ R, σ ∈ CSUE(t|p = l), and
t′ = σ(t[r]p). Note that �R,E on TΣ(X ) induces a relation �R,E on TΣ/E(X ) by

[t]E
σ�R,E [t′]E iff ∃w ∈ TΣ(X ) : t σ�R,E w and w =E t′. Note that, since we will

only consider topmost rewrite theories, we avoid any coherence problems, and,
as pointed above for →R/E and →R,E , the narrowing relation �R,E achieves
the same effect as a more general narrowing relation �R/E (see [24]).
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3 Narrowing-Based Reachability Analysis

A rewrite theory R = (Σ,E,R) specifies a transition system TR whose states
are elements of the initial algebra TΣ/E , and whose transitions are specified by
R. Before discussing the narrowing-based reachability analysis of the system TR,
we review some basic notions about transition systems.

Definition 1 (Transition System). A transition system is writtenA=(A,→),
where A is a set of states, and → is a transition relation between states, i.e., →⊆
A×A. We write A = (A,→, I) when I ⊆ A is a set of initial states.

Frequently, we will restrict our attention to a set of initial states in the transition
system and, therefore, to the subsystem of states and transitions reachable from
those initial states. However, we can obtain a useful approximation of such a
reachable subsystem by using a folding relation in order to shrink the associated
transition system, i.e., to collapse several states into a previously seen state
according to some criteria.

Definition 2 (Folding Reachable Transition Subsystem). Given A =
(A,→, I) and a relation G ⊆ A × A, the reachable subsystem from I in A with
folding G is written ReachG

A(I) = (ReachG
→(I),→G, I), where

ReachG
→(I) =

⋃
n∈N

FrontierG
→(I)n,

F rontierG
→(I)0 = I,

FrontierG
→(I)n+1 = {y ∈ A | (∃z ∈ FrontierG

→(I)n : z → y)∧
(�k ≤ n,w ∈ FrontierG

→(I)k : y G w)},
→G=

⋃
n∈N

→G
n+1,

x→G
n+1 y

⎧⎨
⎩

if x ∈ FrontierG
→(I)n, y ∈ FrontierG

→(I)n+1, x→ y; or
if x ∈ FrontierG

→(I)n, y �∈ FrontierG
→(I)n+1,

∃k ≤ n : y ∈ FrontierG
→(I)k, ∃w : (x→ w ∧ w G y)

Note that, the more general the relation G, the greater the chances ofReachG
A(I)

being a finite transition system. In this paper, we consider only folding relations
G ∈ {=E,≈E,�E} on transition systems whose state set is TΣ/E(X )

s
for a given

sort s. We plan to study other folding relations. For =A = {(a, a) | a ∈ A}, we
write ReachA(I) for the transition system Reach=A

A (I), which is the standard
notion of reachable subsystem. We are furthermore interested in comparisons
between different transition systems, for which we use the notions of simulation,
lifting simulation, and bisimulation.

Definition 3 (Simulation, lifting simulation, and bisimulation). Let A =
(A,→A) and B = (B,→B) be two transition systems. A simulation from A to B,
written A H B, is a relation H ⊆ A× B such that a H b and a →A a′ implies
that there exists b′ ∈ B such that a′ H b′ and b →B b

′. Given A = (A,→A, IA)
and B = (B,→B, IB), H is a simulation from A to B if (A,→A) H (B,→B) and
∀a ∈ IA, ∃b ∈ IB s.t. a H b. A simulation H from (A,→A) to (B,→B) (resp.
from (A,→A, IA) to (B,→B, IB)) is a bisimulation if H−1 is a simulation from
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(B,→B) to (A,→A) (resp. from (B,→B, IB) to (A,→A, IA)). We call a simu-
lation (A,→A, IA) H (B,→B, IB) a lifting simulation if for each finite sequence
b0 →B b1 →B b2 →B · · · →B bn with b0 ∈ IB, there exists a finite sequence
a0 →A a1 →A a2 →A · · · →A an with a0 ∈ IA such that ai H bi for 0 ≤ i ≤ n.

Note that a lifting simulation is not necessarily a bisimulation. A lifting simulation
is a simulation which ensures that false finite counterexamples do not exist. It is
easy to see that simulations, lifting simulations, and bisimulations compose, that
is, if A H B K C are simulations (resp. lifting simulations, resp. bisimulations),
thenAH ;K C is a simulation (resp. lifting simulation, resp. bisimulation). In fact,
we have associated categories, with transition systems as objects and simulations
(resp. lifting simulations, resp. bisimulations) as morphisms.

In rewriting logic we usually specify a concurrent system as a topmost1 rewrite
theory R = (Σ,E,R), where states are E-equivalence classes of ground terms of
a concrete top sort State, i.e., elements in TΣ/E,State, and transitions are rewrite
rules l → r for l, r ∈ TΣ(X )State that rewrite states into states. We can describe
the operational behavior of the concurrent system by an associated transition
system.

Definition 4 (TR-Transition System). Let R = (Σ,E,R) be a topmost
rewrite theory with a top sort State. We define the transition system TR =
(TΣ/E,State,→R,E).

Example 1. Consider a simplified version of Lamport’s bakery protocol, in which
we have several processes, each denoted by a natural number, that achieve mu-
tual exclusion between them by the usual method common in bakeries and deli
shops: there is a number dispenser, and customers are served in sequential order
according to the number that they hold. This system can be specified as an
order-sorted topmost rewrite theory in Maude2 as follows:
1 Obviously, not all concurrent systems need to have a topmost rewrite theory specifi-
cation. However, as explained in [24], many concurrent systems of interest, including
the vast majority of distributed algorithms, admit topmost specifications. For ex-
ample, concurrent object-oriented systems whose state is a multiset of objects and
messages can be given a topmost specification by enclosing the system state in a
top operator. Even hierarchical distributed systems of the “Russian doll” kind can
likewise be so specified, provided that the boundaries defining such hierarchies are
not changed by transitions.

2 The Maude syntax is so close to the corresponding mathematical notation for defin-
ing rewrite theories as to be almost self-explanatory. The general point to keep in
mind is that each item: a sort, a subsort, an operation, an equation, a rule, etc., is
declared with an obvious keyword: sort, subsort, op, eq, rl, etc., with each dec-
laration ended by a space and a period. A rewrite theory R = (Σ, E, R) is defined
with the signature Σ using keyword op, equations in E are specified using keyword
eq or keywords assoc, comm and id: (for associativity, commutativity, and identity,
respectively) appearing in an operator declaration, and rules in R using keyword
rl. Another important point is the use of “mix-fix” user-definable syntax, with the
argument positions specified by underbars; for example: if then else fi. We write
the sort of a variable using keyword var or after its name and a colon, e.g. X:Nat.
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0 ; 0 ; [0, idle]

��
s(0) ; s(0) ; [0, idle]

��
s2(0) ; s2(0) ; [0, idle]

��
s(0) ; 0 ; [0, wait(0)]

��
s2(0) ; s(0) ; [0, wait(s(0))]

��
s3(0) ; s2(0) ; [0, wait(s2(0))]

��
s(0) ; 0 ; [0, crit(0)]

�������������������
s2(0) ; s(0) ; [0, crit(s(0))]

..																			
· · ·

Fig. 1. Infinite transition system ReachTR (0 ; 0 ; [0, idle])

fmod BAKERY-SYNTAX is
sort Nat .
op 0 : -> Nat .
op s : Nat -> Nat .
sorts ModeIdle ModeWait ModeCrit Mode .
subsorts ModeIdle ModeWait ModeCrit < Mode .
sorts ProcIdle ProcWait Proc ProcIdleSet ProcWaitSet ProcSet .
subsorts ProcIdle < ProcIdleSet .
subsorts ProcWait < ProcWaitSet .
subsorts ProcIdle ProcWait < Proc < ProcSet .
subsorts ProcIdleSet < ProcWaitSet < ProcSet .
op idle : -> ModeIdle .
op wait : Nat -> ModeWait .
op crit : Nat -> ModeCrit .
op [_,_] : Nat ModeIdle -> ProcIdle .
op [_,_] : Nat ModeWait -> ProcWait .
op [_,_] : Nat Mode -> Proc .
op none : -> ProcIdleSet .
op __ : ProcIdleSet ProcIdleSet -> ProcIdleSet [assoc comm id: none] .
op __ : ProcWaitSet ProcWaitSet -> ProcWaitSet [assoc comm id: none] .
op __ : ProcSet ProcSet -> ProcSet [assoc comm id: none] .
sort State .
op _;_;_ : Nat Nat ProcSet -> State .

endfm
mod BAKERY is
protecting BAKERY-SYNTAX .
var PS : ProcSet .
vars N M K : Nat .
rl N ; M ; [K, idle] PS => s(N) ; M ; [K, wait(N)] PS .
rl N ; M ; [K, wait(M)] PS => N ; M ; [K, crit(M)] PS .
rl N ; M ; [K, crit(M)] PS => N ; s(M) ; [K, idle] PS .

endm

Given the initial state t1 = “0 ; 0 ; [0, idle]”, where the first natural is the
last distributed ticket and the second one is the value of the current ticket
number accepted in critical section, the infinite transition system ReachTR

(t1)
is depicted in Figure 1. We will graphically identify initial states by underlining
them.

Narrowing calculates the most general rewriting sequences associated to a term.
We can exploit this generality and use narrowing as a lifting simulation of rewrit-
ing. We write TΣ/E(X )◦

State
for the set of E-equivalence classes of terms of sort

State excluding variables, i.e., TΣ/E(X )◦
State

= TΣ/E(X )
State

\XState. We can define
the transition system associated to narrowing as follows.

Definition 5 (NR-Transition System). Let R = (Σ,E,R) be a topmost
rewrite theory with a top sort State. We define a transition system NR =
(TΣ/E(X )◦

State
,�R,E).

Note that we exclude variables in Definition 5, since the relation �R,E is not
defined on them.
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N:Nat ; M:Nat ; [0, MD:Mode]
��
��{MD:Mode/idle}

.. ..�����������������
����

{MD:Mode/wait(M:Nat)}

// //����
�	
�� {MD:Mode/crit(M:Nat)}

((((�����������������

Fig. 2. Finite transition system Reach�E
NR

(N:Nat ; M:Nat ; [0, MD:Mode])

Theorem 1 below relates the transition systems associated to narrowing and
rewriting. Note that we do not have a bisimulation in general, since a term
t ∈ TΣ(X ) may have narrowing steps with incomparable substitutions σ1, . . . , σk,
i.e., given i �= j, σi(t) may disable the rewriting step performed on σj(t) and
viceversa. Our results are based on the following result from [24].

Lemma 1 (Topmost Completeness). [24] For R = (Σ,E,R) a topmost the-
ory, let t ∈ TΣ(X ) be a term that is not a variable, and let V be a set of variables
containing Var(t). For some substitution ρ, let ρ(t) →R/E t′ using the rule l → r

in R. Then there are σ, θ, t” such that t σ�R,E t” using the same rule l → r, t”
is not a variable, ρ|V =E (σ ◦ θ)|V , and θ(t”) =E t′.

Given a subset U ⊆ TΣ/E(X )
s
, we define the set of ground instances of U as

[[U ]] = {[t]E ∈ TΣ/E,s | ∃ [t′]E ∈ U s.t. t �E t′}. Note that U may be a finite
set, whereas [[U ]] can often be an infinite set. This gives us a symbolic way of
describing possibly infinite sets of initial states in TR, which will be very useful
for model checking purposes.

Theorem 1 (Lifting simulation by narrowing). Let R = (Σ,E,R) be a
topmost rewrite theory with a top sort State. Let U ⊆ TΣ/E(X )◦

State
. The re-

lation �E defines two lifting simulations: TR �E NR and ReachTR
([[U ]]) �E

ReachNR
(U).

Since NR is typically infinite, for a set U ⊆ TΣ/E(X )◦
State

of initial states and a
relation G ⊆ TΣ/E(X )◦

State
× TΣ/E(X )◦

State
, to obtain a finite abstraction we may

be interested in the reachable subsystem from U in NR with folding G, i.e., in
the transition system ReachG

NR
(U).

Example 2. Consider Example 1 and let t2 = “N:Nat ; M:Nat ; [0, MD:Mode]”.
The finite transition system Reach�E

NR
(t2) is depicted in Figure 2. In the case of

narrowing, we will graphically tie the substitution computed by each narrowing
step to the proper transition arrow. Also, when a transition step is making use
of the folding relation G, i.e., when it is not a normal rewriting/narrowing step
but a combination of rewriting/narrowing and folding with the relation G, we
mark the arrow with a double arrowhead.

Since a transition system usually includes a set of initial states, we can extend
Theorem 1 to a folding relation G, to obtain a more specific (and in some sense
more powerful) result. For this we need the following compatibility requirement
for a folding relation G.
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N:Nat ; N:Nat ; [0, idle]

id��
s(N:Nat) ; N:Nat ; [0, wait(N:Nat)]

id��
s(N:Nat) ; N:Nat ; [0, crit(N:Nat)]

id

����

Fig. 3. Finite transition system Reach�E
NR

(N:Nat ; N:Nat ; [0, idle])

Definition 6 (�R,E-equivalent relation). Let R = (Σ,E,R) be a rewrite
theory. The binary relation G ⊆ TΣ/E(X ) × TΣ/E(X ) is called �R,E-equivalent
if for [t]E , [t′]E , [w]E ∈ TΣ/E(X ) such that t G w and t �R,E t′ using rule l→ r,
there is [w′]E ∈ TΣ/E(X ) such that w �R,E w′ using rule l→ r and t′ G w′.

Lemma 2 (�R,E-equivalence of G). Let R = (Σ,E,R) be a topmost rewrite
theory with a top sort State. The relations {=E,≈E ,�E} on TΣ/E(X )

State
are

�R,E-equivalent.

Theorem 2 (Simulation by G-narrowing). Let R = (Σ,E,R) be a top-
most rewrite theory with a top sort State. Let U ⊆ TΣ/E(X )◦

State
and G ⊆

TΣ/E(X )◦
State

× TΣ/E(X )◦
State

be �R,E-equivalent. The relation G then defines a
simulation ReachNR

(U) G ReachG
NR

(U).

We can obtain a bisimulation when every narrowing step of a transition system
computes the identity substitution. Intuitively, every possible (ground) rewriting
sequence is represented in its most general way, since narrowing does not further
instantiate states in the narrowing tree. The following results rephrase Theorem
1, Lemma 2, and Theorem 2 above for bisimulations.

Theorem 3 (Bisimulation by narrowing). Let R = (Σ,E,R) be a topmost
rewrite theory with a top sort State. Let U ⊆ TΣ/E(X )◦

State
. Let each transition

in ReachNR
(U) be of the form [t]E

id�R,E [t′]E. The relation �E then defines a
bisimulation ReachTR

([[U ]]) �E ReachNR
(U).

Lemma 3 (�R,E-equivalence of G−1). Let R = (Σ,E,R) be a topmost
rewrite theory with a top sort State. Let T ⊆ TΣ/E(X )

State
be such that for

each [t]E , [t′]E ∈ T , [t]E
σ�R,E [t′]E implies σ = id. The relations {=E

−1,≈E
−1,

�E
−1} on T are �R,E-equivalent.

Theorem 4 (Bisimulation by G-narrowing). Let R = (Σ,E,R) be a top-
most rewrite theory with a top sort State. Let G ⊆ TΣ/E(X )◦

State
× TΣ/E(X )◦

State
and G−1 be �R,E-equivalent. Let U ⊆ TΣ/E(X )◦

State
. Let each transition in

ReachG
NR

(U) be of the form [t]E
id�G

R,E [t′]E. The relation G then defines a bisim-
ulation ReachNR

(U) G ReachG
NR

(U).
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Example 3. Consider Example 1 and t3 = “N:Nat ; N:Nat ; [0, idle]”. The
finite transition system Reach�E

NR
(t3) is depicted in Figure 3. Note that every

transition has the id substitution. Therefore, by Theorems 1 and 4, we have a
bisimulation between the infinite transition systemReachTR

(0 ; 0 ; [0, idle])
shown in Figure 1 and Reach�E

NR
(N:Nat ; N:Nat ; [0, idle]) in Figure 3.

Note that the narrowing-based methods we have presented allow us to answer
reachability questions of the form (∃−→x ) t→∗ t′. That is, given a set of initial
states [[t]] we want to know whether from some state in [[t]] we can reach a state in
[[t′]]. The fact that narrowing provides a lifting simulation of the system TR means
that it is a complete semi-decision procedure for answering such reachability
questions: the above existential formula holds in TR if and only if from t we
can reach by narrowing a term that E-unifies with t′. In particular, narrowing
is very useful for verification of invariants. Let p ∈ TΣ(X )State be a pattern
representing the set-theoretic complement of an invariant. Then, the reachability
formula �−→x : t→∗ p corresponds to the satisfaction of the invariant for the set
of initial states [[t]]. Therefore, narrowing provides a semi-decision procedure for
the violation of invariants. Furthermore, the invariant holds iff p does not E-
unify with any term in ReachNR

(t). It also holds if p does not E-unify with any
term in Reach�E

NR
(t), which is a decidable question if Reach�E

NR
(t) is finite. If p

does E-unify with some term in Reach�E

NR
(t), in general the invariant may or

may not hold: we need to check whether this corresponds to a real narrowing
sequence.

Example 4. Consider Example 1 and the following initial state with two processes
t4 = “N:Nat ; N:Nat ; [0, idle] [s(0), idle]”. The finite transition system
Reach�E

NR
(t4) is depicted in Figure 4. Note that we have a bisimulation between

ReachTR
([[t4]]) andReach�E

NR
(t4). Consider the following pattern identifying that

the critical section property has been violated

“N:Nat ; M:Nat ; [0, crit(C1:Nat)] [s(0), crit(C2:Nat)]”.

We can check that the pattern does not unify with any state in the transition
system of Figure 4, and thus this bad pattern is unreachable from any initial
state being an instance of t4. This provides a verification of the mutual exclusion
property for the infinite-state BAKERY protocol, not just from a single initial state,
but from an infinite set [[t4]] of initial states.

Note, finally, that, for U a set of of initial states, even if the transition system
ReachTR

([[U ]]) is finite, the transition systemReachG
NR

(U) can be much smaller.
Furthermore, the set U is typically finite, whereas the set [[U ]] is typically infinite,
making it impossible to model check an invariant from each initial state by
finitary methods. In all these ways, narrowing allows algorithmic verification of
invariants in many infinite-state systems, and also in finite-state systems whose
size may make them unfeasible to use standard model checking techniques.
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N ; N ; [0,idle] [s(0),idle]

id�������������
id

��������������������������

s(N) ; N ; [0,wait(N)]
[s(0),idle]

id��
id

�������������
s(N) ; N ; [0,idle]

[s(0),wait(N)]

id

��
id

�������������

s(N) ; N ; [0,crit(N)]
[s(0),idle]

id

�� ��

s(s(N)) ; N ; [0,wait(N)]
[s(0),wait(s(N))]

id

��

s(s(N)) ; N ; [0,wait(s(N))]
[s(0),wait(N)]

id

��

s(N) ; N ; [0,idle]
[s(0),crit(N)]

id

����

s(s(N)) ; N ; [0,crit(N)]
[s(0),wait(s(N))]

id

		 		

s(s(N)) ; N ; [0,wait(s(N))]
[s(0),crit(N)]

id







Fig. 4. Finite transition system Reach�E
NR

(N:Nat ; N:Nat ; [0, idle] [s(0), idle])

4 Narrowing-Based ACTL∗ Model Checking

Due to space restrictions, we omit many technical details and results of this
section, which can be found in [16].

Model checking [9] is the most successful verification technique for temporal
logics. When we perform model checking, we use Kripke structures [9] to repre-
sent the state search space, which are just transition systems to which we have
added a collection of atomic propositions Π on its set of states. Intuitively, in
this case of model checking, for each term t with variables (denoting a symbolic
state) the truth value of the atomic propositions Π may not be defined without
further instantiation of t. Therefore, we cannot perform only one narrowing step
in order to build the symbolic Kripke structure and must perform a narrowing
step t �R,E t′ composed with a new relation t′ σ�Π σ(t′) that finds an appro-
priate substitution σ such that the truth value of the atomic propositions in Π
is entirely defined for σ(t′).

In rewriting logic we usually specify a concurrent system as a topmost rewrite
theory R = (Σ,E,R), and the atomic propositions Π as equationally-defined
predicates in an equational theory EΠ = (ΣΠ , EΠ �E). As explained in Section
3, the rewrite theory R contains a top sort State, whose data elements are E-
equivalence classes in TΣ/E,State, and rewrite rules l → r ∈ TΣ(X )State denoting
system transitions. We assume that ΣΠ = Σ�Π �{tt, ff}, where there is a new
top sort Bool with no subsorts, containing only constants tt and ff, and each
p ∈ Π is an atomic proposition function symbol p : State → Bool. Furthermore,
we assume that each equation in EΠ is of the form p(t) = tt or p(t) = ff, where
p ∈ Π and t ∈ TΣ(X )State, and EΠ is sufficiently complete and protects Bool
(for further details see [16]).

We define a Π-Kripke structure associated to a rewrite theory R and a
equational theory EΠ defining the atomic propositions Π as the triple T Π

R =
(TΣ/E,State, (→R,E)•,LΠ), where for each [t]E ∈ TΣ/E,State and p ∈ Π , we have
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0 ; 0 ; [0, idle]

��

s(0) ; s(0) ; [0, idle]ever-crit?,
ever-wait?

��

s2(0) ; s2(0) ; [0, idle]ever-crit?,
ever-wait?

��
s(0) ; 0 ; [0, wait(0)]ever-wait?

��

s2(0) ; s(0) ; [0, wait(s(0))]ever-crit?,
ever-wait?

��

s3(0) ; s2(0) ; [0, wait(s2(0))]ever-crit?,
ever-wait?

��
s(0) ; 0 ; [0, crit(0)]ever-wait?

���������������������
s2(0) ; s(0) ; [0, crit(s(0))]ever-crit?,

ever-wait?

00������������������
· · ·

Fig. 5. Infinite Kripke structure ReachT Π
R
(0 ; 0 ; [0, idle])

p ∈ LΠ([t]E) ⇐⇒ p(t) =(EΠ�E) tt. In what follows we will always assume that
R is deadlock free, that is, that the set of →R,E-canonical forms of sort State is
empty. As explained in [10,29], this involves no real loss of generality, since R can
always be transformed into a bisimilar Rdf which is deadlock free. Under this
assumption the Kripke structure T Π

R then becomes the pair T Π
R = (TR,LΠ). As

in Section 3, given a set U ⊆ TΣ/E,State of initial states, we abuse the notation
and define the reachable sub Π-Kripke structure of T Π

R by ReachT Π
R

(U).

Example 5. Consider Example 1. We are interested in the atomic propositions
Π = {ever-wait?, ever-crit?} expressing that at least one process has been in
its waiting (resp. critical) state.

fmod BAKERY-PROPS is
protecting BAKERY-SYNTAX .
sort Bool . ops tt ff : -> Bool .
ops ever-wait? ever-crit? : State -> Bool .
vars N M : Nat . vars PS : ProcSet .
eq ever-wait?(0 ; M ; PS) = ff .
eq ever-wait?(s(N) ; M ; PS) = tt .
eq ever-crit?(N ; 0 ; PS) = ff .
eq ever-crit?(N ; s(M) ; PS) = tt .

endfm

Given the initial state t1 = “0 ; 0 ; [0, idle]”, the infinite Π-Kripke structure
ReachT Π

R
(t1) is depicted in Figure 5, where we would like to verify the temporal

formulas “ever-wait?⇒ �ever-crit?” and “�(ever-crit?⇒ ever-wait?)”.

As explained above, we can have symbolic states (i.e., terms TΣ/E(X )◦
State

) such
that the atomic propositions Π cannot be evaluated without further instantia-
tion; check the transition system of Figure 3, where propositions
ever-wait? and ever-crit? cannot be evaluated in the node
“N:Nat ; M:Nat ; [0, MD:Mode]”. We use the following relation that instantiates
terms as least as possible to make propositions in Π defined.

t
θ�Π θ(t) ⇐⇒ θ ∈ CSU(EΠ�E)(p1(t) = w1 ∧ · · · ∧ pn(t) = wn)

where for each 1 ≤ i ≤ n, wi is either tt or ff

This instantiation relation is based on whether there is a finitary and complete
unification algorithm for the equational theory EΠ , which is satisfied by the
equational theories used in this paper. We can exploit the generality of narrowing
and define a Kripke-structure associated to narrowing based on the following set
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0 ; 0 ; [0, idle]

id��

s(N:Nat) ; s(N:Nat) ; [0, idle]ever-wait?,ever-crit?

id��
s(0) ; 0 ; [0, wait(0)]ever-wait?

id��

s2(N:Nat) ; s(N:Nat) ; [0, wait(s(N:Nat))]ever-wait?,ever-crit?

id��
s(0) ; 0 ; [0, crit(0)]ever-wait?

id

�� �����������������������������
s2(N:Nat) ; s(N:Nat) ; [0, crit(s(N:Nat))]ever-wait?,ever-crit?

id

����

Fig. 6. Finite Kripke structure Reach�E

N Π
R
({w1, w2}) with w1 = “0 ; 0 ; [0, idle]”

and w2 = “s(N:Nat) ; s(N:Nat) ; [0, idle]”

of terms T Π
Σ/E(X )

State
and the following relation �R,E;Π . We define the set of

terms where the truth value of Π is defined as T Π
Σ/E(X )

State
= {t ∈ TΣ/E(X )◦

State
|

∀p ∈ Π : (p(t) =(EΠ�E) tt) ∨ (p(t) =(EΠ�E) ff)}. The narrowing relation

�R,E;Π is defined as �R,E ; �Π , i.e., t θ�R,E;Π t′ iff ∃w, σ, σ′ s.t. t σ�R,E w,

w
σ′
�Π t′, and θ = σ ◦ σ′. Note that �R,E;Π on TΣ(X ) can be extended to a

relation σ�R,E;Π on TΣ/E(X ) as ( σ�R,E;Π); (=E). We define a Kripke-structure
associated to narrowing as NΠ

R = (T Π
Σ/E(X )

State
,�R/E;Π ,LΠ), where for each

[t]E ∈ T Π
Σ/E(X )

State
and p ∈ Π , we have p ∈ LΠ([t]E) ⇐⇒ p(t) =(EΠ�E) tt.

Results similar to Theorem 1, Lemma 2, Theorem 2, Theorem 3, Lemma 3, and
Theorem 4 can be stated and proved for a deadlock-free topmost rewrite theory
with a top sort State and a equational theory defining the atomic propositions.
Such results and their proofs are included in [16].

Example 6. Consider Example 5. Consider the initial state w =
“N:Nat ; N:Nat ; [0, idle]”, whose transition system is depicted in Figure 3.
This transition system cannot be directly transformed into a Π-Kripke struc-
ture, since propositions {ever-wait?, ever-crit?} cannot be evaluated in, for
instance, state “N:Nat ; N:Nat ; [0, idle]”. Therefore, we must for example
instantiate term w using the narrowing relation �Π and obtain terms w1 =
“0 ; 0 ; [0, idle]” and w2 = “s(N:Nat) ; s(N:Nat) ; [0, idle]”, i.e., w �Π

w1 and w �Π w2. The entire Π-Kripke structure Reach�E

NΠ
R

({w1, w2}) is de-
picted in Figure 6, where, since it is a finite-state system, we can use standard
LTL model checking techniques to model check the formulas “ever-wait? ⇒
�ever-crit?” and “�(ever-crit? ⇒ ever-wait?)”, which in this case hold in
Reach�E

NΠ
R

({w1, w2}). Therefore, the above LTL formulas also hold for the in-

finite-state system T Π
R of Example 5 and the infinite set [[{w1, w2}]] of initial

states. Note that given that all substitutions in Reach�E

NΠ
R

({w1, w2}) are iden-
tity substitutions, we have a bisimulation and then CTL∗ formulas can also be
verified.

Similar arguments to those in Section 3 can be given in favor of narrowing
for model checking ACTL∗ (or CTL∗) properties of systems that are either
infinite-state or too big for standard finite-state methods. For example, when
a set U ⊆ T Π

Σ/E(X )
State

of initial states is provided, ReachG
NΠ

R
(U) for some G
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such as �E can be finite when ReachT Π
R

([[U ]]) is infinite, or can be much smaller
even in the finite-state case. And U can be finite whereas [[U ]] may easily be
infinite, making it impossible to verify properties by standard model checking
algorithms.

5 Concluding Remarks

We have shown that, by specifying possibly infinite concurrent systems as rewrite
theories, narrowing gives rise to a lifting simulation and provides a useful semi-
decision procedure to answer reachability questions. We have also proposed a
method to fold the narrowing graph that, when it yields a finite system, al-
lows algorithmic verification of such reachability questions, including invariants.
Furthermore, we have extended these techniques to the verification of ACTL∗

and LTL formulas. Much work remains ahead, including: (i) gaining experience
with many more examples such as concurrent systems, security protocols, Java
program verification, etc.; (ii) implementing these techniques in Maude, taking
advantage of its LTL model checker; (iii) investigating other folding relations
that might further improve the generation of a finite narrowing search space;
(iv) allowing more general state predicate definitions, for example with data pa-
rameters; (v) studying how grammar-based techniques and narrowing strategies
can be used to further reduce the narrowing search space; and (vi) extending
the results in this paper to more general temporal logics such as TLR [28].
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Abstract. This paper investigates an approach to substitution alterna-
tive to the implicit treatment of the λ-calculus and the explicit treatment
of explicit substitution calculi. In this approach, substitutions are delayed
(but not executed) explicitly. We implement this idea with two calculi,
one where substitution is a primitive construction of the calculus, the
other where substitutions is represented by a β-redex. For both calculi,
confluence and (preservation of) strong normalisation are proved (the
latter fails for a related system due to Revesz, as we show). Applications
of delayed substitutions are of theoretical nature. The strong normalisa-
tion result implies strong normalisation for other calculi, like the compu-
tational lambda-calculus, lambda-calculi with generalised applications,
or calculi of cut-elimination for sequent calculus. We give an investiga-
tion of the computational interpretation of cut-elimination in terms of
generation, execution, and delaying of substitutions, paying particular
attention to how generalised applications improve such interpretation.

1 Introduction

Explicit substitution calculi were introduced as an improvement of the λ-calculus,
capable of modelling the actual implementation of functional languages and sym-
bolic systems [1]. However, other applications of theoretical nature were soon
recognized, particularly in proof theory, where λ-calculus also fails to give a com-
putational interpretation to sequent calculus and cut-elimination [4,5,14].

The basic idea in explicit substitution calculi is the separation between the
generation and the execution of substitution. But this idea is operative only if
this execution can be delayed. Of course, the mentioned separation gives the
opportunity to do something between the generation and the execution of a
substitution. But there are situations, for instance in a syntax like that of the
λx-calculus [12], where explicit rules for the delaying of substitution are required.

This paper investigates explicit rules for delaying substitution in a syntax
similar to λx. However, a first and immediate observation is that explicit delay-
ing cannot be combined with explicit execution without breaking termination.
The situation is even worse if we try to implement substitutions as β-redexes
(Revesz’s idea [11]). So, the system we study, named λs, separates generation
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and execution of substitution, but employs implicit execution. In addition, it has
permutation rules for achieving the delaying of substitution.

The calculus λs enjoys good properties, like confluence and (preservation of)
strong normalisation. The circumstance of employing implicit substitution disal-
lows direct applications of λs to the implementation of computational systems.
However, λs has several theoretical uses. Strong normalisation of λs implies the
same property for several calculi, like the computational lambda-calculus [9] and
lambda-calculi with generalised applications [6]. Certainly, future work should
exploit the use of the calculus for reasoning about programs. In this paper we
emphasize applications to proof theory.

We define a sequent calculus LJ with a simple cut-elimination procedure
consisting of 3 reduction rules. Then, we show that λs gives a computational
interpretation to the 3 cut-elimination rules of LJ , precisely as rules for the gen-
eration, delaying, and execution of substitution. Strong normalisation of λs is
lifted to LJ . We pay particular attention to how generalised applications [6,15],
when combined with delayed substitutions, improve the mentioned interpreta-
tion of LJ .

Notations: Types (=formulas) are ranged over by A,B,C and generated from
type variables using the “arrow type” (=implication), written A ⊃ B. Contexts
Γ are sets of declarations x : A where each variable is declared at most once.
Barendregt’s variable convention is adopted. In particular, we take renaming of
bound variables for granted. Meta substitution is denoted by [ /x] . By a value
we mean a variable or λ-abstraction in the calculus at hand.

2 Delayed Substitutions

Motivation: Recall the syntax of the λx-calculus:

M,N,P ::= x |λx.M |MN | 〈N/x〉M

The variable x is bound in M in λx.M and 〈N/x〉M . The scope of λx. and
〈N/x〉 extends to the right as much as possible. There is a reduction rule

(β) (λx.M)N → 〈N/x〉M

that generates substitutions and four rules

(x1) 〈N/x〉x→ N (x3) 〈N/x〉MP → (〈N/x〉M)〈N/x〉P
(x2) 〈N/x〉y → y, y �= x (x4) 〈N/x〉λy.M → λy.〈N/x〉M

for the explicit execution of substitution. By variable convention, x �= y and
y /∈ N in rule (x4). Let x = ∪4

i=1xi.
Suppose we want to reduce Q0 = (λx.M)NN ′, where M = λy.P . After

a β-step, we obtain Q1 = (〈N/x〉M)N ′. Substitution 〈N/x〉M was generated
but not immediately executed. This allows the delaying of its execution, if we
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decide to do something else, e.g. reducing N , M , N ′, or another term in the
program surrounding Q1. However, we may very well be interested in delaying
the execution of 〈N/x〉M in another way, namely by applying immediately M
to N ′. In λx this may be achieved in some sense, if a step of the execution of
〈N/x〉M is performed, yielding Q2 = (λy.P ′)N ′, where P ′ = 〈N/x〉P .

This lack of separation between substitution execution and delaying is unsat-
isfactory. The delaying of 〈N/x〉M in Q1 can be achieved if we adopt a permu-
tation rule that yields 〈N/x〉MN ′, that is Q′

2 = 〈N/x〉(λy.P )N ′. However, we
cannot add this permutation to the set of x-rules without breaking termination.
Suppose we want to reduce 〈N/x〉M1M2, where M2 is a pure term (i.e. a term
without substitutions) and x /∈M2. Then a cycle is easily generated:

〈N/x〉M1M2 →x (〈N/x〉M1)〈N/x〉M2 (by x3)
→∗

x (〈N/x〉M1)[N/x]M2 (because M2 is pure)
= (〈N/x〉M1)M2 (because x /∈M2)
→ 〈N/x〉M1M2 (by permutation)

(Here [N/x]M2 denotes meta-substitution.) This is why the calculus of delayed
substitutions we introduce next does not have x-rules for explicit, stepwise exe-
cution of substitution, but instead a single σ-rule for its implicit execution.
The λs-calculus: The terms of λs are given by:

M,N,P,Q ::= x |λx.M |MN | 〈N/x〉M

This set of terms is equipped with the following reduction rules:

(β) (λx.M)N → 〈N/x〉M (π1) (〈N/x〉M)P → 〈N/x〉MP
(σ) 〈N/x〉M → [N/x]M (π2) 〈〈N/x〉P/y〉M → 〈N/x〉〈P/y〉M

where meta-substitution [N/x]M is defined as expected. In particular

[N/x]〈P/y〉M = 〈[N/x]P/y〉[N/x]M . (1)

By variable convention, x �= y in π2 and (1). For the same reason, y /∈ N in (1).
Let π = π1∪π2. The choice of permutations π1 and π2 is pragmatic. These are

the permutations appropriate for the applications of the calculus to be shown
in this paper. It is natural that, if the applications of the calculus are different,
other rules for pulling out substitutions in other contexts are useful and needed.

By a typable term M ∈ λ or M ∈ λs we mean a term that has a simple type
A, given a context Γ assigning types to the free variable of M . This relation is
written Γ ) M : A and generated by the set of usual rules for assigning simple
types to variables, abstraction and application (which we omit), plus the typing
rule of substitution:

Γ ) N : A Γ, x : A )M : B
Γ ) 〈N/x〉M : B

Natural relationship with the λ-calculus: The study of the natural inter-
pretation of λs in λ yields easily a proof of confluence for λs. First, λs simulates
β-reduction.
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Proposition 1. If M →β N in λ then M →β P →σ N in λs, for some P .

Conversely, let ( )� : λs → λ be defined as follows: x� = x, (MN)� = M �N �,
(λx.M)� = λx.M �, and (〈N/x〉M)� = [N �/x]M �.

Proposition 2. (1) If M →β N in λs then M � →∗
β N

� in λ. (2) If M →πσ N

in λs then M � = N �. (3) In λs, M →∗
σ M

�.

Proposition 3 (Confluence). Let R ∈ {π1, π2, π}. Then →βσR is confluent
in λs.

Proof: By confluence of β-reduction in λ and Propositions 1 and 2. �

We will prove strong normalisation of λs as a corollary to strong normalisation
of another calculus of delayed substitutions. The terms of the latter are the
ordinary λ-terms, where β-redexes are regarded as substitutions. The first author
to develop this idea was G. Revesz, see for instance [11].

Revesz’s system: G. Revesz proposed to replace in the λ-calculus the ordinary
β-rule and the related calls to meta-substitution by a set of local transforma-
tion rules. These local rules correspond to the explicit, stepwise execution of
substitution.

(β1) (λx.x)N → N (β3) (λx.λy.M)N → λy.(λx.M)N
(β2) (λx.y)N → y, y �= x (β4) (λx.MP )N → (λx.M)N((λx.P )N)

Let R = ∪4
i=1βi. By variable convention, x �= y and y /∈ N in β3. A basic property

of Revesz’s system is that

(λx.M)N →∗
R [N/x]M . (2)

Now, we have seen that in a syntax with a primitive substitution construction,
we cannot combine explicit substitution execution and delaying without breaking
termination. When substitution is represented by β-redexes, the situation is even
worse, as substitution execution alone breaks termination.

Theorem 1. There is a typed λ-term Q such that Q is not R− SN .

Proof: Let Q = (λx.(λy.M)N)P . We underline the successive redexes.

Q = (λx.(λy.M)N)P
→β4 (λx.λy.M)P ((λx.N)P ) = Q′

→β3 (λy.(λx.M)P )((λx.N)P )
→β4 (λy.λx.M)((λx.N)P )((λy.P )((λx.N)P ))
→∗

R (λy.λx.M)((λx.N)P )[(λx.N)P/y]P (by (2))
= (λy.λx.M)((λx.N)P )P (as y /∈ P )
→β3 (λx.(λy.M)((λx.N)P ))P
→β4 (λx.λy.M)P ((λx.((λx.N)P ))P )
→∗

R (λx.λy.M)P [P/x]((λx.N)P ) (by (2))
= (λx.λy.M)P ((λx.N)P ) (as x /∈ ((λx.N)P ))
= Q′ �
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So, one has to give up the idea of explicitly executing substitution within the
syntax of the λ-calculus. But we can do explicit delaying.

Delaying of substitution in the λ-calculus: In the λ-calculus, define π =
π1 ∪ π2, where:

(π1) (λx.M)NP → (λx.MP )N
(π2) M((λx.P )N) → (λx.MP )N

In both redexes, M “wants” to be applied to P , but something forbids this
application, namely the fact that one of M or P is inside a β-redex (or “sub-
stitution”). The rules rearrange the term so that the “substitution” is delayed.
We denote the calculus consisting of β and π as λ[βπ]. Notice that π1 is one of
Regnier’s σ-rules [10].

Proposition 4. In λ, →βπ is confluent, but →π is not.

Proof: Notice that (λx.M)NP =β (λx.MP )N and M((λy.P )N) =β (λy.
MP )N . So, confluence of→βπ follows from confluence of→β. On the other hand,
(λx.M)N((λy.P )Q) π-reduces to both (λx.(λy.MP )Q)N and (λy.(λx.MP )N)
Q, which can easily be two π-nfs. �

Define |M |, the size of λ-term M , as follows: |x| = 1; |λx.M | = 1+ |M |; |MN | =
1 + |M |+ |N |.

Proposition 5. In λ, →π is terminating.

Proof: The termination of →π1 is in [10]. As to the remaining cases, define
w(M), the weight of a λ-term M , as follows: w(x) = 0; w(λx.M) = w(M);
w(MN) = |N |+w(M)+w(N). It holds that, if M →π1 N , then w(M) = w(N);
and that, if M →π2 N , then w(M) > w(N). The proposition now follows. �

Let M be a λ-term such that M is β-SN. Define ||M ||β to be the maximal length
of β-reduction sequences starting from M .

Proposition 6. Let M →π N . If M is β-SN, then so is N and ||M ||β ≥ ||N ||β.

Proof: For π1, [10] proves ||M ||β = ||N ||β . For π2, the argument is a slight
generalisation of an argument in [7], and uses the fact that, for M , N λ-terms,

x ∈ FV (M)⇒ ||(λx.M)N ||β ≤ ||[N/x]M ||β + 1 (3)
x /∈ FV (M)⇒ ||(λx.M)N ||β ≤ ||M ||β + ||N ||β + 1 . (4)

This is called the “fundamental lemma of perpetuality”1. Let Q0 = M((λx.P )N)
and Q1 = (λx.MP )N . If x ∈ P , then ||Q||β ≥ 1 + ||M([N/x]P )||β ≥ ||Q1||β .

1 One immediate consequence of this fact is that if (i) (λx.M)N /∈ β − SN and (ii)
N ∈ β − SN when x /∈ FM(M), then [N/x]M /∈ β − SN . It is this latter fact that
is called “fundamental lemma of perpetuality” in [13].
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The first inequality is by Q0 →β M([N/x]P ) and the second by (3). If x /∈ P ,
then ||Q||β ≥ 1 + ||N ||β + ||MP ||β ≥ ||Q1||β . The first inequality is by Q0 →k

β

M((λx.P )N ′)→β MP (where k = ||N ||β) and the second by (4). �

Theorem 2 (SN and PSN). If M ∈ λ is β-SN (in particular, if M is typable)
then M is βπ-SN.

Proof: From Propositions 5 and 6. �

Sharper relationship with the λ-calculus: Let ( )� : λs → λ[βπ] be de-
fined as follows: x� = x, MN � = M �N �, (λx.M)� = λx.M �, and (〈N/x〉M)� =
(λx.M �)N �. Hence, mapping ( )� “raises” substitutions to β-redexes.

Proposition 7. (1) If M →β N in λs then M � = N �. (2) If M →πi N in λs
then M � →πi N

� in λ[βπ] (i = 1, 2). (3) If M →σ N in λs then M � →β N
� in

λ[βπ].

Proposition 8. In λs, →βπ is terminating.

Proof: From termination of →β in λs, parts 1. and 2. of Proposition 7 and
Proposition 5. �

Proposition 9. Let M ∈ λs and suppose M � is β-SN. Then M is βπσ-SN.

Proof: From Propositions 7, 8 and 6. �

Theorem 3 (SN and PSN).

1. If M ∈ λs is typable then M is βπσ-SN.
2. If M ∈ λ is β-SN then, in λs, M is βπσ-SN.

Proof: 1. SupposeM ∈ λs is typable. ThenM � is typable, because ( )� preserves
typability. Hence M � is β-SN, by strong normalisation of the simply typed λ-
calculus. By Proposition 9, M is βπσ-SN.

2. If M ∈ λ, then M � = M . Now apply Proposition 9. �

3 Related Calculi

Substitution is a natural interpretation for let-expressions and generalised appli-
cations. These interpretations allow strong normalisation of λs to be transferred
to the computational λ-calculus λC [8] and to the ΛJ-calculus [6].

Computational λ-calculus: Its terms are given by:

M,N,P ::= x |λx.M |MN | letx = N inM .

It was proved in [9] that strong normalisation for Moggi’s original reduction rules
is a consequence of strong normalisation for the following restricted set of rules
(where V stands for a value):
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(C1) (λx.M)V → [V/x]M
(C2) letx = V inM → [V/x]M
(C3) letx = M inx→M
(C4) let y = letx = P inM inN → letx = P in let y = M inN
(ηv) λx.V x→ V, x /∈ V

Let C = ∪4
i=1Ci. Checking [9] again one sees that strong normalisation of →C

(ηv dropped) is sufficient for strong normalisation of λC with ηv omitted.
Now, instead of mapping the restricted calculus to the linear λ-calculus (as

in [9]), we simply interpret into λs, reading letx = N inM as 〈N/x〉M . With
this interpretation, C2 and C3 are particular cases of σ, C4 is π2, and C1 is β
followed by σ. Thus strong normalisation of λs implies strong normalisation of
→C , and, therefore, of λC with ηv omitted.

λ-calculus with generalised application: The system ΛJ of [6] is renamed
here as λg. Terms of λg are given by

M,N,P ::= x |λx.M |M(N, x.P ) .

The typing rule for generalized application is

Γ )M : A ⊃ B Γ ) N : A Γ, x : B ) P : C
Γ )M(N, x.P ) : C

gElim

The λg-calculus has two reduction rules:

(β) (λx.M)(N, y.P ) → [[N/x]M/y]P
(π) M(N, x.P )(N ′, y.P ′) →M(N, x.P (N ′, y.P ′)) .

The natural mapping ( )∗ : λg → λs is given by x∗ = x, (λx.M)∗ = λx.M∗,
and (M(N, x.P ))∗ = 〈M∗N∗/x〉P ∗. This mapping gives a strict simulation (one
step mapped to one or more steps). Here is the simulation of π.

(M0(N1, x.P1)(N2, y.P2))∗ = 〈(〈M∗
0N

∗
1 /x〉P ∗

1 )N∗
2 /y〉P ∗

2

→π1 〈〈M∗
0N

∗
1 /x〉P ∗

1N
∗
2 /y〉P ∗

2

→π2 〈M∗
0N

∗
1 /x〉〈P ∗

1N
∗
2 /y〉P ∗

2

= (M0(N1, x.P1(N2, y.P2)))∗ .

So, strong normalisation of λs implies strong normalisation of λg.

4 Applications to Proof Theory

Summary of the section: The λ-calculus is the computational interpretation
of natural deduction (in the setting of intuitionistic implicational logic). A λ-
term is assigned to each natural deduction by the Curry-Howard correspondence,
so that the interpretation of normalisation is β-reduction. There is a traditional
assignment ( )� of λ-terms to sequent calculus derivations, but this assignment
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fails to give a computational interpretation to the process of cut-elimination.
We try an obvious assignment ( )� of λs-terms, but only an optimization ( )� of
the latter gives a computational interpretation in terms of generation, execution
and delaying of substitution. As a by product, we lift strong normalisation of
λs to sequent calculus. The need for the mentioned optimization is caused by
a problem of “imperfect substitution” in sequent calculus, which does not show
up when translating sequent calculus with ( )�. A tool that we use in analyzing,
and in some sense overcoming, this problem is the calculus λgs, a calculus with
generalised application and a primitive substitution construction. Figure 1 shows
the systems and mappings studied in this section.

LJ
.� , .� ��

.�
λgs

LJ

�
�
�
�
�
�
�
�
�
�

.� , .� � λs

.∗

�

LJ

�
�
�
�
�
�
�
�
�
�

.� � λ

.	

�

Fig. 1. Sequent calculus and delayed substitution

The calculus LJ: Sequent calculus derivations are represented by:

L ::= Axiom(x) | Left(y, L, (x)L) |Right((x)L)|Cut(L, (y)L)

Typing rules are as follows:

Γ, x : A ) Axiom(x) : A
Axiom

Γ ) L1 : A Γ, x : A ) L2 : C
Γ ) Cut(L1, (x)L2) : C

Cut

Γ ) L1 : A Γ, x : B ) L2 : C
Γ, y : A ⊃ B ) Left(y, L1, (x)L2) : C

Left
Γ, x : A ) L : B

Γ ) Right((x)L) : A ⊃ B
Right

where x /∈ Γ in Left, Right and Cut.
Cut elimination in LJ follows the t-protocol of [2]. If a cut is right-permutable,

perform its complete, upward, right permutation. This is the first structural
step (S1). If a cut is not right-permutable, but is left-permutable, perform its
complete, upward, left permutation. This is the second structural step (S2). If
a cut is neither right-permutable, nor left-permutable, then it is a logical cut
(both cut formulas main in the premisses). In that case, apply the logical step
of cut-elimination (Log), generating cuts with simpler cut-formula.



Delayed Substitutions 177

Let the predicate mll(x, L) (read “x is main in a linear left introduction L”)
be defined by: mll(x, L) iff there are L1, y, L2 such that L = Left(x, L1, (y)L2)
and x /∈ L1, L2. The reduction rules of LJ are as follows (where Axiom, Left,
Right and Cut are abbreviated by A, L, R and C, respectively):

(S1) C(L1, (x)L2) → S1(L1, x, L2)
(S20) C(A(y), (x)L(x, L′

1, (y
′)L′

2)) → L(y, L′
1, (y

′)L′
2)

(S21)C(L(z, L1, y, L2), (x)L(x, L′
1, (y′)L′

2)) → L(z, L1, y, S2(L2, x, L
′
1, y

′, L′
2))

(S22) C(C(L1, (y)L2), (x)L(x, L′
1(y

′)L′
2)) → C(L1, y, S2(L2, x, L

′
1, y

′, L′
2))

(Log) C(R((y)L1), (x)L(x, L′
1, (y

′)L′
2)) → C(C(L′

1, (y)L1), (y′)L′
2))

Provisos: in S1, not mll(x, L2); in the remaining rules, x /∈ L′
1, L

′
2. We let S2 =

∪2
i=0S2i. The meta-operations S1 and S2 are given by:

S1(L, x,Axiom(x)) = L
S1(L, x,Axiom(y)) = Axiom(y), y �= x

S1(L, x, Left(x, L′, (z)L′′)) = Cut(L, (x)Left(x, S1(L, x, L′), (z)S1(L, x, L′′))
S1(L, x, Left(y, L′, (z)L′′)) = Left(y, S1(L, x, L′), (z)S1(L, x, L′′)), y �= x

S1(L, x,Right((y)L′)) = Right((y)S1(L, x, L′))
S1(L, x,Cut(L′, (y)L′′)) = Cut(S1(L, x, L′), (y)S1(L, x, L′′))

S2(Axiom(y), x, L′
1, y

′, L′
2) = Left(y, L′

1, y
′, L′

2)
S2(Left(y, L1, (z)L2), x, L′

1, y
′, L′

2) = Left(y, L1, (z)S2(L2, x, L
′
1, y

′, L′
2))

S2(Right((y)L′), x, L′
1, y

′, L′
2) = Cut(Right((y)L′), (x)Left(x, L′

1, y
′, L′

2))
S2(Cut(L1, (y)L2), x, L′

1, y
′, L′

2) = Cut(L1, (y)S2(L2, x, L
′
1, y

′, L′
2))

Traditional assignment: The mapping ( )� : LJ → λ is defined by

Axiom(x)� = x Right((x)L)� = λx.L�

Left(y, L1, (x)L2)� = [yL�
1/x]L

�
2 Cut(L1, (x)L2)� = [L�

1/x]L
�
2

Under this mapping, some parts of cut-elimination are translated as β-reduction,
but others receive no interpretation.

Proposition 10. Let R = Log (resp. R ∈ {S1, S2}). If L1 →R L2 in LJ , then
L�

1 →β L
�
2 in λ (resp. L�

1 = L�
2).

A first attempt to overcome this situation is to consider the assignment ( )� :
LJ → λs, which generates substitutions where ( )� calls meta-substitution:

Axiom(x)� = x Right((x)L)� = λx.L�

Left(y, L1, (x)L2)� = 〈yL�
1 /x〉L�

2 Cut(L1, (x)L2)� = 〈L�
1 /x〉L�

2

This mapping reveals a problem that was concealed by ( )�.

“Imperfect substitution” in LJ: Let L0 = Cut(L1, (x)Left(x, L2, (y)L3)) and
L4 = S1(L1, x, Left(x, L2, (y)L3)) = Cut(L1, x, Left(x, L′

2, (y)L′
3)), where L′

i =
S1(L1, x, Li), i = 2, 3, and x is a free variable of L2 or L3. Then L0 →S1 L4. For
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i = 2, 3, let Pi = [L�
1/x]L

�
i . Then L�

0 = [L�
1/x][xL

�
2/y]L

�
3 = [L�

1P2/y]P3 = L�
4, the

latter equality following by Pi = L′
i

�, i = 2, 3.
Now consider ( )� instead. Let Ni = [L�

1 /x]L�
i , i = 2, 3. On the one hand

L�
0 = 〈L�

1 /x〉〈xL�
2 /y〉L�

3 →σ [L�
1 /x]〈xL�

2 /y〉L�
3 = 〈L�

1N2/y〉N3 = M , say. On
the other hand L�

4 = 〈L�
1 /x〉〈xL′�

2 /y〉L′�
3 . We would have liked L�

4 = M , but L�
4

is at least a σ-step behind: L�
4 → 〈L�

1L
′�
2 /y〉L′�

3 . Unfortunately, these missing
σ-steps propagate recursively, and we can expect L′�

i →+
σ Ni.

Why is L�
4 a σ-step behind? Because, going back to L4, S1 is an imperfect

substitution operator, which did not replace the free, head occurrence of x in
Left(x, L2, (y)L3) by L1. Instead, a cut is generated which ( )� translates as the
substitution 〈L�

1 /x〉 . On the other hand, in [L�
1 /x]〈xL�

2 /y〉L�
3 the free, head

occurrence of x in 〈xL�
2 /y〉L�

3 is indeed replaced by L�
1 . These mismatches are

not visible if meta-substitution is employed everywhere.
One way out is to extend LJ to a calculus where any term can enter the head

position of Left( , L2, (y)L3) (see λgs later on). For now, we optimize ( )� by
performing the missing σ-steps at “compile time”.

Normalisation in λs versus cut-elimination in LJ: We introduce mapping
( )� : LJ → λs, which is defined exactly as ( )�, except for the clause for cuts,
which now reads:

Cut(L1, (x)Left(x, L2, (y)L3))� = 〈L�
1L

�
2 /y〉L�

3 , if x /∈ L2, L3

Cut(L1, (x)L2)� = 〈L�
1 /x〉L�

2 , if ¬mll(x, L2)

Mapping ( )� has better properties than mapping ( )� as to preservation of
reduction, but it introduces a typical identification. Suppose x /∈ L2, L3 and
let L0 = Cut(z, (x)Left(x, L2, (y)L3)) and L4 = Left(z, L2, (y)L3). Notice that
L0 →S20 L4, and that L�

0 and L�
1 are the same λs-term of the form 〈zN2/y〉N3.

We now obtain for λs a result that improves Proposition 10. In order to achieve
a good correspondence, we need to introduce in λs an “eager” version of π, since
the structural steps of cut-elimination in LJ perform complete permutations of
cuts. First, we define certain contexts:

S ::= 〈N/x〉[] | 〈N/x〉S

Each S is a λs-term with a hole []. S[P ] denotes the result of filling P in the
hole of S. Next, “eager” π is defined by

(π′) 〈S[V ]N/x〉P → S[〈V N/x〉P ] ,

where V is a value. It is easy to show that each π′-step corresponds to a sequence
of one or more π-steps.

Theorem 4 (Computational interpretation of cut-elimination). Let R ∈
{S1, S21, S22, Log}. If L1 →R L2 (resp. L1 →S20 L2) in LJ , then L�

1 →+
βπσ L

�
2

in λs (resp. L�
1 = L�

2 ). In addition, ( )� maps a reduction sequence ρ in LJ
from L1 to L2 to a reduction sequence ρ� in λs from L�

1 to L�
2 in a, so to say,
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structure-preserving way. To each R-step in ρ, there is a corresponding R′-steps
in ρ�, where R′ is given according to the following table

R R′ computational interpretation
S1 σ execution of substitution

S21 ∪ S22 π′ delaying of substitution
Log β generation of substituion

Moreover these R′-steps in ρ� may be interleaved with trivial σ-steps of the form

〈N1/x〉〈xN2/y〉N3 →σ 〈N1N2/y〉N3 (x /∈ N2, N3) . (5)

The proof is postponed. It is useful to introduce here a new calculus λgs. By
studying λgs, we will obtain a proof and two improvements of this theorem.

The λgs-calculus: The λgs-calculus is simultaneously an extension of λg with
a primitive substitution constructor, written 〈N/x〉M , and an extension of λs
where application is generalised. Reduction rules are as follows:

(β) (λx.M)(N, y.P ) → 〈〈N/x〉M/y〉P
(σ) 〈N/x〉M → [N/x]M

(π1) (〈M/x〉N)(N ′, y.P ′)→ 〈M/x〉(N(N ′, y.P ′))
(π2) 〈〈M/x〉N/y〉P → 〈M/x〉〈N/y〉P
(π3) M(N, x.P )(N ′, y.P ′)→M(N, x.P (N ′, y.P ′))
(π4) 〈M(N, x.P )/y〉P ′ →M(N, x.〈P/y〉P ′) .

Meta-substitution in λgs is defined as expected. In particular, equation (1) holds
again. Let π = ∪4

i=0πi. A λgs-term is in βπσ-normal form iff it is in βπ3σ-normal
form iff it is a λg-term in βπ-normal form iff it has no occurrences of substitution
and every occurrence of generalised application in it is of the form x(N, y, P ).

Mappings between λgs and LJ: There is an obvious injection of LJ into
λgs. Formally, we define the mapping ( )� : LJ → λgs as follows:

Axiom(x)� = x Right((x)L)� = λx.L�

Left(y, L1, (x)L2)� = y(L�
1 , x.L

�
2 ) Cut(L1, (x)L2)� = 〈L�

1 /x〉L�
2

Hence, we may regard λgs as an extension of LJ , where the particular case
y(N, x.P ) of the generalised application construction plays the role of left intro-
duction. Conversely, M(N, x.P ) may be regarded, when mapping back to LJ ,
as a primitive construction for a particular case of cut (except in the case of M
being a variable). The mapping ( )� : λgs→ LJ embodies this idea:

x� = Axiom(x) (λx.M)� = Right((x)M�)
(y(N, x.P ))� = Left(y,N�, (x)P �) (〈N/x〉M)� = Cut(N�, (x)M�)

(M(N, x.P ))� = Cut(M�, (z)Left(z,N�, (x)P �)), if M is not a variable

with z /∈ N,P in the last equation.
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Lemma 1. (1) For all L ∈ LJ : (i) L�� = L. (ii) If L is cut-free, then L� is
βπσ-normal. (2) For all M ∈ λgs, if M is βπσ-normal, then M� is cut-free and
M�� = M .

Corollary 1. ( )� and ( )� are mutually inverse bijections between the sets of
cut-free terms of LJ and the βπσ-normal λgs-terms.2

If cuts are allowed, we cannot expect a bijective correspondence. Suppose x /∈
N2, N3 and N1 is not a variable. Let M1 = 〈N1/x〉(x(N2, y.N3)) and M2 =
N1(N2, y.N3). Then, M�

1 and M�
2 are the same term L, a cut of the form

Cut(L1, (x)Left(x, L2, (y)L3)). Notice that M1 →σ M2, by a sigma-step of the
restricted form

〈N1/x〉(x(N2, y.N3))→σ N1(N2, y.N3) (x /∈ N2, N3). (6)

Now, when mapping cut L back to λgs, there is, so to say, the M1 option
and the M2 option. Mapping ( )� corresponds to the first option, whereas the
second option corresponds to a refinement of ( )� named ( )�. This last mapping
is defined exactly as ( )�, except for the case of cuts, which now reads

Cut(L1, (x)Left(x, L2, (y)L3))� = L�
1 (L�

2 , y.L
�
3 ), if x /∈ L2, L3

Cut(L1, (x)L2)� = 〈L�
1 /x〉L�

2 , if ¬mll(x, L2)

In particular, mappings ( )� and ( )� coincide on cut-free terms.
Mapping ( )� has better properties than mapping ( )� as to preservation of

reduction, but it introduces a typical identification. Suppose x /∈ L2, L3 and let
L0 = Cut(z, (x)Left(x, L2, (y)L3)) and L4 = Left(z, L2, (y)L3). Then L�

0 and L�
1

are the same λgs-term of the form z(N2, y.N3). By the way, L0 →S20 L4.

Normalisation in λgs versus cut-elimination in LJ: We now investigate
how mappings ( )� and ( )� relate normalisation in λgs and cut-elimination in
LJ . To this end, we only need π1 and π3 among the π-rules of λgs. In addition,
“eager” versions rules of π1 and π3 are required:

(π′1) (〈M/x〉N)(N ′, y.P ′)→ 〈M/x〉(N@(N ′, y, P ′))
(π′3) M(N, x.P )(N ′, y.P ′)→M(N, x.P@(N ′, y, P ′)) ,

where M@(N ′, y, P ′) is defined by recursion on M as follows: x@(N ′, y, P ′) =
x(N ′, y.P ′); (λx.M)@(N ′, y, P ′) = (λx.M)(N ′, y.P ′); (M(N, x.P ))@(N ′, y, P ′)
= M(N, x.P@(N ′, y, P ′)); and (〈M/x〉N)@(N ′, y, P ′) = 〈M/x〉(N@(N ′, y, P ′)).

Let π′ = π′1 ∪ π′2. It is easy to see that one π′i-step (i = 1, 3) corresponds to
one or more R-steps, where R = π1 ∪ π3.

Proposition 11. Let R ∈ {β, π′, σ}. If M →R N in λgs, then M� →+
S1,S2,Log

N� in LJ , except for some cases of R = σ, of the trivial form (6), for which one
has M� = N�.
2 It is well-known that cut-free LJ-terms are not in bijective correspondence with β-
normal λ-terms; therefore, they are not in bijective correspondence with βπσ-normal
λs-terms. In the particular case of ( )�, terms of the form Left(y, L1, x.L2) are always
mapped to a substitution (which is a σ-redex).



Delayed Substitutions 181

Proof: By induction on M →R N , using the fact that, for all M,N,P ∈ λgs:
(i) S1(M�, x,N�)→∗

S20 [M/x]N)�; (ii) if x /∈ N,P then S2(M�, x,N�, y, P �) =
(M@(N, y, P ))�. �

An inspection of the proof shows that ( )� maps a reduction sequence ρ in λgs
from M1 to M2 to a reduction sequence ρ� in LJ from M�

1 to M�
2 in a, so to

say, structure-preserving way. Let R ∈ {β, π, σ}. To each R-step in ρ, there is a
corresponding R′-step in ρ�, where R′ is given by the left table below:

R R′

σ S1 ∪ S20
π′1 S21 ∪ S22
π′3 S22
β Log

R R′

S1 σ
S21 π′3
S22 π′

Log β

(7)

In addition, these R′-steps in ρ� may be interleaved with S20-reduction steps.

Proposition 12. Let R ∈ {S1, S21, S22, Log}. If L1 →R L2 (resp. L1 →S20

L2) in LJ , then L�
1 →+

βπσ L
�
2 in λgs (resp. L�

1 = L�
2 ). Moreover, a reduction

sequence ρ in LJ from L1 to L2 to a reduction sequence ρ� in λgs from L�
1

to L�
2 in a, so to say, structure-preserving way. To each R-step in ρ, there is

a corresponding R′-step in ρ�, where R′ is given according to the right table in
(7). In addition, these R′-steps in ρ� may be interleaved with trivial σ-steps of
the form (6).

Proof: By induction on L1 →R L2 or L1 →S20 L2. The proof uses the fact
that, for all L1, L2, L3 ∈ LJ : (i) either 〈L�

1 /x〉L�
2 →σ Cut(L1, (x)L2)� or

〈L�
1 /x〉L�

2 = Cut(L1, (x)L2)�; (ii) S1(L1, x, L2)� = [L�
1 /x]L

�
2 ; (iii) if x /∈ L2, L3

then S2(L1, x, L2, y, L3)� = L�
1 @(L�

2 , y, L
�
3 ). An inspection of this inductive

proof shows the statement regarding reduction sequences. �

LJ versus λgs: Let us extract some lessons from the comparison between LJ
and λgs (where the latter is equipped with π′ instead of π). The two systems are
close. Cut-free terms and βπσ-nfs are in bijective correspondence. Up to trivial
reduction steps of the form S20 or (6), reduction sequences are similar, and obey
a correspondence between reduction steps of the forms S1, S2, Log and σ, π′, β,
respectively. However, λgs is a preferable syntax for three reason: (1) it avoids
the “imperfect substitution” problem; (2) it has a lighter notation; (3) reduction
rules do not have side conditions. Side conditions in the reduction rules of LJ
guarantee that a cut undergoes a S2 reduction only when it is not a S1-redex.
This sequencing is built in the syntax of λgs: a π-redex is never a σ-redex.

Mapping λgs into λs: There is a bridge via λgs between LJ and λs. We
now close the bridge by studying mapping ( )∗ : λgs → λs. This mapping
extends the one between λg and λs, introduced in Section 3, with the clause
(〈N/x〉M)∗ = 〈N∗/x〉M∗. As before with λg, mapping ( )∗ produces a strict
simulation of reduction in λgs by reduction in λs (for the moment, π is taken
in its “lazy” form both in λgs and λs). So, the following is immediate.
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Theorem 5 (SN). If M ∈ λgs is typable, then M is βπσ-SN.

Indeed, the simulation is perfect (one step in the source mapped to exactly one
step in the target) for β and σ, and it is so for π if π is taken in the “eager”
form. We introduce in λgs an equivalent3 definition of rules π′1 and π′3:

(π′1) (〈M/x〉C[V ])(N, y.P )→ 〈M/x〉C[V (N, y, P )]
(π′3) M(N, x.C[V ])(N, y.P )→M(N, x.C[V (N, y, P )]) ,

where V is a value and C is a context belonging to the class

C ::= [] |M(N, x.C) | 〈N/x〉C

Proposition 13. Let R ∈ {β, σ, π′}. If M →R N in λgs, M∗ →R N∗ in λs.

Proof: Only π′ remains to be checked. It is useful to define, for M ∈ λs, S =
〈M/x〉C∗ by recursion on C as follows: 〈M/x〉[]∗=〈M/x〉[]; 〈M/x〉(P (N, y.C))∗ =
〈M/x〉(〈P ∗N∗/y〉C∗); 〈M/x〉(〈N/y〉C)∗ = 〈M/x〉(〈N∗/y〉C∗). By induction on C
one proves that, for all M,N,P ∈ λgs, (〈M/x〉C[P ])∗ = (〈M∗/x〉C∗)[P ∗] and
M(N, x.C[P ])∗ = (〈M∗N∗/x〉C∗)[P ∗]. Next we do an induction on M →π′ N . �

We can finally give a proof of Theorem 4. It follows from Propositions 12 and
13, and the fact that ( )� = ( )∗ ◦ ( )� and that ( )∗ maps reduction steps of the
form (6) to reduction steps of the form (5).

We finish by obtaining strong cut-elimination4 for LJ as a corollary to strong
normalisation for λs. Indeed, all we need is Theorem 4, together with the fact
that →S20 is terminating and that ( )� preserves typability.

Theorem 6 (Strong cut-elimination). Let R = S1 ∪ S2 ∪ Log. For all L ∈
LJ , if L is typable, then L is R-SN.

Improving the computational interpretation: Theorem 4 is an improve-
ment of Proposition 10 as to the interpretation of cut-elimination. Depending
on the role we attribute to λgs, we can see Propositions 12 and 13 as improve-
ments over Theorem 4 w.r.t. the same goal. On the one hand, if we regard λgs
as an adaptation of λs particularly suited for the comparison with LJ , then
Proposition 12 improves Theorem 4, because it includes a bijection between cut-
free terms and βσπ-normal forms. On the other hand, if we regard λgs as an
adaptation of LJ which avoids the problem of “imperfect substitution”, then
Proposition 13 improves Theorem 4, because it states a perfect correspondence
that avoids the little perturbations of having S20-steps in the source reduction
sequence that are not simulated, or extra σ-steps interleaved in the target re-
duction sequence.
3 The equivalence follows from two facts: (1) for all V, N, P ∈ λgs, C[V ]@(N, y, P ) =

C[V (N, y.P )]; (2) every M ∈ λgs can be written as C[V ], with V value.
4 A (weak) cut-elimination result is obtained as follows. Let L ∈ LJ . From M = L� ,
one gets a βπσ-nf N . Proposition 11 guarantees that L = L�� →∗ N� in LJ . Since
N is a βπσ-nf, N� is cut-free.
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However, in Proposition 13 the mismatch between βσπ-normal forms in λgs
and in λs remains, and in Proposition 12 the little perturbations related to
S20-steps and extra σ-steps survive (Theorem 4 shared both defects). For an
isomorphism between sequent calculus and natural deduction, see [3].
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Abstract. Reachability and joinability are central properties of term
rewriting. Unfortunately they are undecidable in general, and even for
some restricted classes of term rewrite systems, like shallow term rewrite
systems (where variables are only allowed to occur at depth 0 or 1 in the
terms of the rules).

Innermost rewriting is one of the most studied and used strategies
for rewriting, since it corresponds to the ”call by value” computation of
programming languages. Henceforth, it is meaningful to study whether
reachability and joinability are indeed decidable for a significant class of
term rewrite systems with the use of the innermost strategy.

In this paper we show that reachability and joinability are decidable
for shallow term rewrite systems assuming that the innermost strategy
is used. All of these results are obtained via the definition of the concept
of weak normal form, and a construction of a finite representation of
all weak normal forms reachable from every constant. For the particular
left-linear shallow case and assuming that the maximum arity of the
signature is a constant, these results are obtained with polynomial time
complexity.

1 Introduction

Reachability and joinability are central properties of term rewrite systems (TRS).
A term t is reachable from a term s if there exists a rewrite sequence that trans-
forms s into t. Two terms u and v are joinable if there exists a term w reachable
from u and v.

Reachability and joinability are undecidable in general, and even if we restrict
to linear TRS (variables at every side of a rule occur at most once), or to shallow
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TRS [9] (variables occur at depth 0 or 1 in the terms of every rule). The more
powerful positive results for decidability are based on the property of effective
preservation of regularity. A TRS is effectively regularity preserving when the set
of terms reachable from a given regular set (a set of terms recognizable by a tree
automaton[1]) is also regular, and computable from the initial regular set. For
this and other reasons, effective preservation of regularity has been extensivelly
studied [11,2,8,10,12,13]. These results include in particular all TRS that are
right-shallow (variables in the right terms of the rules occur at depth 0 or 1) and
right-linear (variables in the right terms of the rules occur at most once).

In several cases rewriting is considered restricted to the particular strategy of
innermost rewriting, that corresponds to the call by value computation of pro-
gramming languages, where arguments are fully evaluated before the function
application. Henceforth, it is meaningful to study whether reachability and join-
ability are indeed decidable for a significant class of TRS under the assumption
of the use of the innermost strategy.

At first look deciding properties like reachability and joinability seems to be
more difficult for innermost rewriting, since we have not such powerful regularity
preserving results. But surprisingly we can deal with shallow TRS, which are not
regularity preserving even for general rewriting.

In this paper, we prove the decidability of reachability and joinability for
shallow TRS assuming the use of the innermost strategy. All of these results are
based on an initial common construction. We define the concept of weak normal
form as any term such that all its subterms at depth 1 are either constants or
normal forms. After that we compute a finite representation of all weak normal
forms reachable from every constant. This representation that we call WNF-
representation is based on a kind of constrained terms. Its usefulness relies on
the fact that in any innermost derivation with a shallow TRS, one gets a weak
normal form just after every rewrite step at the top. Finally, we prove decidable
the problems of reachability and joinability making an adequate use of the WNF-
representation. For the particular case of left-linear shallow TRS and assuming
that the maximum arity of the signature is a constant these results are obtained
with polynomial time complexity.

The paper is structured as follows. In Section 2 we introduce some basic no-
tions and notations. In Section 3 we present transformations that replace the
shallow rules by flat rules, and allow us to simplify the arguments in the rest of
the paper. In Section 4 we define weak normal forms and a kind of constrained
terms that represent weak normal forms. Before dealing with shallow TRS, in
Section 5 we show how to compute the WNF-representation for left-linear shallow
TRS for two reasons. On the one side for explanation purposes, since this sim-
pler case allows to understand better the later general construction. On the other
side, this case is interesting due to its time complexity, as we have mentioned
before. In Section 6 we show in two parts how the WNF-representation can be
computed for shallow TRS. In the first part we give a (possibly non-terminating)
process that computes this finite representation. In the second part we obtain



186 G. Godoy and E. Huntingford

a computable bound for execution time of the process necessary to complete
the finite representation. In Sections 7 and 8 we decide the reachability and
joinability problems making use of the WNF-representation. Finally, in Section 9
we deal with complexity issues.

2 Preliminaries

We use standard notation from the term rewriting literature. A signature Σ
is a (finite) set of function symbols, which is partitioned as ∪iΣi such that
f ∈ Σn if the arity of f is n. Symbols in Σ0, called constants, are denoted by
a, b, c, d, e, with possible subscripts. The elements of a set V of variable symbols
are denoted by x, y, z with possible subscripts. The set T (Σ,V) of terms over Σ
and V , position p in a term, subterm t|p of term t at position p, and the term
t[s]p obtained by replacing t|p by s are defined in the standard way. For example,
if t is f(a, g(b, h(c)), d), then t|2.2.1 = c, and t[d]2.2 = f(a, g(b, d), d). The empty
sequence, denoted by λ, corresponds to the root position. We write p1 > p2

(equivalently, p2 < p1) and say p1 is below p2 (equivalently, p2 is above p1) if p2

is a proper prefix of p1, that is, p1 = p2.p
′
2 for some nonempty p′2. Positions p and

q are disjoint if p �≥ q and q �≥ p. By Vars(t) we denote the set of all variables
occurring in t. The height of a term s is 0 if s is a variable or a constant, and
1 + max iheight(si) if s = f(s1, . . . , sm). The depth of an occurence at position
p of a term t in a term s, i.e. s = s[t]p, is |p|. The size of a term s = fs1 . . . sm,
denoted by |s|, is 1 + Σm

i=1size(si). Usually we will denote a term f(t1, . . . , tn)
by the simplified form ft1 . . . tn, and t[s]p by t[s] when p is clear by the context
or not important.

A substitution σ is sometimes presented explicitly as {x1 �→ t1, . . . , xn �→ tn}.
We assume standard definitions for a rewrite rule l → r, a term rewrite system
R, the one step rewrite relation at position p induced by R →R,p, and the one
step rewrite relation induced by R (at any position) →R (denoted also as → if R
is clear by the context). A rewrite step at a position different from λ is sometimes
denoted by s →R,>λ t. We do the usual assumptions for the rules l → r of a
TRS R, i.e. l is not a variable, and all variables occurring in r also occur in l.

The notations↔,→+, and→∗, are standard [3]. R is terminating if no infinite
derivation s1 →R s2 → · · · exists. A term t is reachable from s by R (or, R-
reachable) if s →∗

R t. A term t is reachable from a set of terms S by R if t is
reachable from all terms in S. A term s is R-irreducible (or, in R-normal form)
if there is no term t such that s →R t. Two terms s and t are R-joinable if
there exists a term u reachable from s and t. A set S of terms is R-joinable
if there exists a term u reachable from all terms in S. A (rewrite) derivation
(from s) is a sequence of rewrite steps (starting from s), that is, a sequence
s →R s1 →R s2 →R . . .. With s →∗

R t we will denote that t is R-reachable
from s, or a concrete derivation from s to t, depending on the context. The
length of a derivation s →∗

R t, denoted as |s →∗
R t|, is the number of steps of

the derivation. Depending on the context, |s →∗
R t| denotes the length of the

minimum derivation s→∗
R t.
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A term t is called ground if t contains no variables. It is called shallow if all
variable positions in t are at depth 0 or 1. It is flat if its height is at most 1. A
rule l → r ∈ R is called shallow if both l, r are shallow; it is flat if both l, r are
flat.

A rewrite step s = s[u]p →R,p s[v]p is innermost if all proper subterms of u
are normal forms. In the rest of the article we will always assume that all rewrite
steps are innermost, and that the problems we deal with, like reachability and
joinability, refer to innermost rewriting. In particular, whenever we say that a
term s reaches a term t we mean that s innermost reach t.

3 Simplifying Assumptions

In this section we comment some simplifying transformations on the signature
and the given shallow TRS. Similar transformations have appeared in other
previous works [6,5], and we just comment them.

We will always assume that all terms are constructed over a given fixed sig-
nature Σ that contains several constants and only one non-constant function
symbol f . If this was not the case, we can define a transformation T from terms
over Σ into terms over a new signature Σ′ as follows. Let m be the maximum
arity of a symbol in Σ plus 1. We chose a new function symbol f with arity m
and define the new signature Σ′ = Σ′

0 ∪ Σ′
m as Σ′

0 = Σ and Σ′
m = {f}. Note

that all symbols of Σ appear also in Σ′ but with arity 0. Now, we recursively
define T : T (Σ,V) → T (Σ′,V) as T (c) = c and T (x) = x for constants c ∈ Σ0

and variables x ∈ V , and T (gt1 . . . tk) = f(T (t1), . . . , T (tk), g, . . . , g) for terms
headed with g ∈ Σ −Σ0.

Lemma 1. Let s, t be terms in T (Σ,V) and R a shallow TRS with all its terms
in T (Σ,V). Let T (R) be {T (l)→ T (r)|l → r ∈ R}.

Then, T (R) is shallow, s innermost-R-reaches t iff T (s) innermost-T (R)-
reaches T (t), and s and t are innermost-R-joinable iff T (s) and T (t) are inner-
most-T (R)-joinable.

Finally, we will also assume that all rules in R are flat. If this was not the case,
we can modify R as follows. First remove all rules l → r such that l has a
proper subterm that is not a normal form: note that in such a case this rule is
useless for innermost rewriting. Second, we proceed by applying the following
transformations whenever is possible.

a) If there is a non-constant normal form t that is a proper subterm of a left-
hand-side of a rule in R, then create a new constant c, replace all occurrences
of t in the left-hand-sides of the rules of R by c, and add the rule t → c to
R.

b) If there is a non-constant term t that is a proper subterm of a right-hand-side
of a rule in R, then create a new constant c, replace all occurrences of t in
the right-hand-sides of the rules of R by c, and add the rule c→ t to R.
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At every step decreases the total sum of the number of positions at depth
more than one in all of the left and right hand sides of R. Hence, this process
terminates.

Lemma 2. Let s, t be terms in T (Σ,V) and R a shallow TRS with all its terms
in T (Σ,V). Let R∞ be the resulting TRS of the above transformation.

Then R∞ is flat, s innermot-R-reaches t iff s innermost-R∞-reaches t, and
s and t are innermost-R-joinable iff s and t are innermost-R∞-joinable.

4 Weak Normal Forms and Constrained Terms

Definition 1. A term t is a weak normal form if it is either a constant or
a non-constant term of the form t = ft1 . . . tm such that every ti is either a
constant or a normal form.

We will write P(S) to denote the powerset of S minus the empty set.

Definition 2. A constraint C is a partial mapping C : V → P(Σ0), i.e. an
assignment from variables to non-empty sets of constants.

Given a constraint C, a TRS R, and a substitution σ, we say that σ is a
solution of C (w.r.t. R) if for all x in Dom(C) it holds that xσ is a normal form
w.r.t. R, xσ is reachable from C(x), and xσ is not in Σ0.

A constrained term is a pair (t, C), where t is a flat term and C is a constraint,
defined only for Vars(t), which we will denote as t|C. A term tσ is an instance
of t|C if σ is a solution of C.

Note that then any instance of a constrained term is a weak normal form.

5 WNF-Representation for Flat Left-Linear TRS

We describe an algorithm that computes, for every constant c, a set of con-
strained terms rc, and an auxiliary boolean value nc. Its goal is make rc to
contain a set of constrained terms such that their instances are all the weak
normal forms reachable from c, and make nc to be true if and only if there exists
some non-constant normal form reachable from c. The basic idea is to compute
many rewrite steps at once, by anticipating them. Set (a) deals with rewrite
steps at λ, set (b) anticipates several rewrite steps at depth 1 that transform a
constant into an other constant, and set (c) anticipates the transformation of a
constant at depth 1 into a non-constant normal form.

WNF-Representation Algorithm for flat left-linear TRS

1. For every constant c do rc := {c|∅}, and nc :=False.
2. For every constant c do:
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rc:= rc ∪
(a) {t|C′ ∣∣ ∃(s|C) ∈ rc : (s→R,λ t ∧ C′ ⊆ C) ∧

Dom(C′) = Vars(t)} ∪

(b) {t[e]j|C
∣∣ (t|C) ∈ rc ∧ t|j ∈ Σ0 ∧ e ∈ Σ0 ∧
(e|∅) ∈ rt|j} ∪

(c) {t[x]j |(C ∪ {(x, {t|j})})
∣∣ (t|C) ∈ rc ∧ t|j ∈ Σ0 ∧ x �∈ Dom(C) ∧
nt|j = True}

nc:=nc ∨ ∃(t|C) ∈ rc : t is a non-constant normal form

3. If some rc or nc has changed in the previous step, up to renaming of variables,
then go to 2.

Note that at every execution step the sets rc can only increase, and that
the values nc can only pass from False to True. Note also that the generated
constrained terms are always of the form c|∅ or x|{(x, {c})} or fα1 . . . αm|C,
where the αi’s are constants or variables and C is a set of pairs of the form
(αi, {c}), just one for every different variable αi. If n is the total number of
constants, then at most n+n+ (n+n+m)m of these constrained terms exists,
up to renaming of variables. Since every execution step does simple operations
of matching on these data, the total cost of the algorithm is (n+m)O(m).

We have not indicated the order in which the assignments rc:= . . . and nc:= . . .
for the different c’s are executed. This is not important for the goal of the process,
but, for simplicity purposes in later arguments, we will assume that all of them
are computed at once, as a multiple assignment.

We will denote with r∞c and n∞c the limit of the values of the corresponding
variables rc and nc in the WNF-representation algorithm.

Theorem 1. (correctness) For every c and every constrained term (t|C) in
r∞c , there exists at least one instance of (t|C), and all instances of (t|C) are
innermost-reachable from c.

For every c, if n∞c =True, then there exists a non-constant normal t form
innermost-reachable from c.

Proof. We prove both facts for all ri
c and ni

c by induction on the number of
steps i in the execution process. In step 1, after the instruction rc := {c|∅} the
property is satisfied since c is reachable from c, which is the only instance of c|∅.
Let us analyze step 2, and suppose that every rc and nc satisfies the assumption
before one of the assignments rc:=rc ∪ . . .. In this instruction several elements
are added to rc, and we will show that all of them satisfy the assumption.

– Case {t|C′ ∣∣ ∃(s|C) ∈ rc : (s →R,λ t ∧ C′ ⊆ C ∧ Dom(C′) = Vars(t)}. By
induction hypothesis s|C has some instance sσ. Since C′ ⊆ C, σ is a solution
of C′ and hence, tσ is an instance of t|C′. Now, let tσ′ be any instance of
t|C′. W.l.o.g. we assume σ′ defined only for Dom(C′). Using the previous σ,
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we extend σ′ to the variables x of Dom(C)−Dom(C′) as σ′(x) = σ(x). Now,
σ′ satisfies also C, and sσ′ is an instance of s|C. By induction hypothesis
sσ′ is reachable from c. Since the rewrite step s→R,λ t is innermost and σ′

is a replacement of variables by normal forms, the rewrite step sσ′ →R,λ tσ
′

using the same rule is also innermost. Therefore tσ′ is reachable from c.
– Case {t[e]j|C

∣∣ (t|C) ∈ rc ∧ t|j ∈ Σ0 ∧ e ∈ Σ0 ∧ (e|∅) ∈ rt|j}. By induction
hypothesis, there exists an instance tθ of t|C, and hence θ is a solution of C,
and t[e]jθ is an instance of t[e]j |C.
For any instance t[e]jσ of t[e]j|C, we have the instance tσ for t|C, which is
reachable from c by induction hypothesis. Similarly, e is reachable from t|j
by induction hypothesis. We conclude that t[e]jσ is reachable from c.

– Case {t[x]j |(C ∪ {(x, {t|j})})
∣∣ (t|C) ∈ rc ∧ t|j ∈ Σ0 ∧ x �∈ Dom(C) ∧ nt|j =

True}. By induction hypothesis, there exists an instance tθ of t|C. W.l.o.g.
we assume θ defined only for Dom(C). As nt|j = True there is a non-constant
normal form s that is reachable from t|j by induction hypothesis. If we extend
θ to x such that xθ = s, then t[x]jθ is an instance of t[x]j |(C ∪ {(x, {t|j})}).
For any instance t[x]jσ of t[x]j |(C ∪ {(x, {t|j})}), it holds that xσ is a non-
constant normal form reachable from {t|j}. Moreover, tσ is an instance of
t|C, which is reachable from c by induction hypothesis. We conclude that
t[x]j(σ ∪ (x, s)) is reachable from c.

Let us analyze the following assignment when it makes nc to change from
False to True.
nc:=nc ∨ ∃(t|C) ∈ rd : t is a non-constant normal form
By the condition, t is a non-constant normal form. Since t|C ∈ rc, by induction

hypothesis there exists an instance tσ of t, and tσ is reachable from c. To conclude
it is enough to see that tσ is in fact a normal form. By the definition of instance
of a constrained term we have that tσ is a weak normal form. Hence, all its non-
constant subterms at depth 1 are normal forms. Moreover, since t is a normal
form, all the constant subterms at depth 1 are also normal forms. But tσ neither
can be rewritten at position λ, since t can not and R is left-linear. 	


(Recall that →∗ is understood as innermost rewriting with R.)

Theorem 2. (completeness) For every constant c and every weak normal form
s innermost-reachable from c, there exists some constrained term t|C in r∞c
such that s is an instance tσ of t|C, and for all (x, {d}) in C it holds that
|d→∗ xσ| < |c→∗ s|.

Moreover, if there exists a non-constant normal form s innermost-reachable
from c, then n∞c is True.

Proof. We prove both facts by induction on |c →∗ s|, but considering the first
fact smaller: when proving the second fact we will assume that the first fact is
true for smaller than or equal values, and that the second fact is true for smaller
values.

Since r∞c =
⋃
ri
c and n∞c =

∨
ni

c for every c, it is enough to see that every
of such t|C and True have been added or assigned to the corresponding rc
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and nc, respectively, at some point of the execution of the WNF-representation
algorithm.

Fact 1: Let s be a weak normal form reachable from a certain c. We consider
a derivation c →∗ s such that |c →∗ s| is minimum. If c →0 s, then s = c, and
c|∅ has been added to rc in the first step of the WNF-representation algorithm.
Otherwise, the derivation c→∗ s has at least one step at λ. We decompose this
derivation considering the last of such steps at λ as c→∗ u→l→r,λ v →∗ s.

Note that u and v are weak normal forms, and since c →∗ s was chosen
minimal, |c →∗ u| < |c →∗ s|. By induction hypothesis, there exists u′|C in r∞c
such that u is an instance u′σ of u′|C, and for all (x, {d}) in C it holds that
|d→∗ xσ| < |c→∗ u| < |c→∗ s|.

Note that, if u|j is a constant, then u′|j = u|j. Therefore, since R is linear, the
rule l → r is also applicable on u′ at position λ. Let v′ be such that u′ →l→r,λ v

′.
Instantiating previous rewrite step with σ we obtain u′σ →l→r,λ v

′σ. Since u′σ
is u, v′σ has to be v. Let C′ be such that C′ ⊆ C and Dom(C′) = Vars(v′).
Then, σ is a solution of C′ and v′σ = v is an instance of v′|C′. Moreover, the
constrained term v′|C′ has been added to rc due to set (a) of the assignment in
step 2. of the WNF-representation algorithm.

If v′ is a constant, then v′ = v = s, since there are no rewrite steps at λ in
v →∗ s. In this case C′ is empty and we are done. If v′ is a variable, then v
is a normal form and hence v = s. In this case Dom(C′) ⊆ Dom(C) and we
are done. Hence, assume that v′ is height 1, v is of the form fv1 . . . vm, s is
of the form fs1 . . . sm, and we have derivations vj →∗ sj with less number of
steps than c →∗ s. Recall that s is a weak normal form, and hence, the si’s
are either constants or normal forms. If vj is a non-constant term, then it is a
normal form and vj = sj . If vj is a constant term then either sj is a constant
that belongs to r∞vj

by induction hypothesis, or a normal form and n∞vj
is true,

again by induction hypothesis. We define s′ by replacing in v′, every constant
vj by either sj when sj is a constant, or by a new variable xj when sj is not
a constant. We also define D = C′ ∪ {(xj , {vj})

∣∣ vj ∈ Σ0, sj �∈ Σ0}, and
γ = σ ∪ {xj �→ sj | vj ∈ Σ0, sj �∈ Σ0}. Due to sets (b) and (c) of the assignment
in step 2 and by repeated executions for every of such vj ’s, the constrained term
s′|D has been added to rc and has s = s′γ as instance. Moreover, for all (x, {d})
in D it holds that |d→∗ xσ| < |c→∗ s|.

Fact 2: Let s be a non-constant normal form reachable from c. We must show
that n∞c is true. By induction hypothesis there exists a constrained term t|C
in r∞c such that s is an instance tσ of t|C. Due to the assignment nc:=. . . in
the WNF-representation algorithm to conclude it suffices to see that t is a non-
constant normal form. If t is a variable then it is a non-constant normal form.
Otherwise it is of the form ft1 . . . tm. If s|j is a constant, then s|j = tj . Therefore,
by the left-linearity of R, any rule applicable on t at position λ is also applicable
on s at position λ, and hence, such a rule does not exist. Hence, t is a normal
form. 	
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6 WNF-Representation for Flat TRS

6.1 A (non-termitating) Process for Computing a
WNF-Representation

We describe a (not necessarily terminating) process that computes, for every
constant c, two sets of constrained terms rc and rc, and for every set S ∈
P(Σ0), a set of non-constant normal forms. Its goal is make rc to contain a set
of constrained terms such that their instances are all the weak normal forms
reachable from c, make rc to contain a set of flat constrained terms such that
their normal form instances are all the non-constant normal forms reachable
from c, and make nS to contain all the non-constant normal forms reachable
from S (that could be infinite).

(In order to simplify notation, in some cases we will write ∃(t|C) ∈ rc instead
of ∃C : (t|C) ∈ rc or ∃t : (t|C) ∈ rc, depending on the case.)

WNF-representation Process

1. For every constant c do rc := {c|∅}, rc := ∅, and for every S ∈ P(Σ0) do
nS := ∅.

2. For every constant c do:
rc:= rc ∪
(a) {t|C′ ∣∣ ∃(s|C) ∈ rc : (s→R,λ t ∧ C′ ⊆ C ∧

Dom(C′) = Vars(t)} ∪

(b) {t|D
∣∣ ∃(t|C) ∈ rc : ∀x : (C(x) ⊆ D(x) ∧
nD(x) �= ∅)} ∪

(c) {tσ|Cσ
∣∣ σ is a substitution-to-variables, and
(t|C) ∈ rc and
∀x, y : (xσ = yσ ⇒ C(x) = C(y))} ∪

(d) {t[e]j|C
∣∣ (t|C) ∈ rc ∧ t|j ∈ Σ0 ∧ e ∈ Σ0 ∧
(e|∅) ∈ rt|j} ∪

(e) {t[x]j |(C ∪ {(x, {t|j})})
∣∣ (t|C) ∈ rc ∧ t|j ∈ Σ0 ∧ x �∈ Dom(C) ∧
n{t|j} �= ∅}

rc:=rc ∪ {t|C
∣∣ t|C ∈ rc and the height of t is 1} ∪
{ft1 . . . tm|C

∣∣ ∃x|{(x, S)} ∈ rc : ∀d ∈ S :
ft1 . . . tm|C ∈ rd up to renaming} ∪
{ft1 . . . tm|D

∣∣ ∃(ft1 . . . tm|C) ∈ rc : ∀x : (C(x) ⊆ D(x) ∧ nD(x) �= ∅)}

3. If some rc or rc has changed in previous step, up to renaming of variables,
then go to 2.

4. For every S ∈ P(Σ0) do:
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nS :=nS ∪ {tσ
∣∣ ∃C :∀d ∈ S : (t|C) ∈ rd up to renaming, and

∀x ∈ Dom(C) : (xσ ∈ nC(x)) and
tσ is a non-constant normal form }

5. If some nS has changed in the previous step, go to 2.

As for the WNF-Representation Algorithm for flat left-linear TRS, we will
assume that the assignments rc:=. . . ,rc:=. . . for the different c’s are executed at
once, as a multiple assignment, and similarly for the assignments nS :=. . . for the
different S’s. We will denote again with r∞c , r∞c and n∞S the limit of the values
of the corresponding variables rc, rc and nS in the execution process.

The corresponding correctnes and completeness proofs for this case are not
completely trivial extensions of the ones for the left-linear case, but follow the
same scheme.

Theorem 3. (correctness) For every c and every constrained term (t|C) in
r∞c , there exists at least one instance of (t|C), and all instances of (t|C) are
innermost-reachable from c.

For every c and every constrained term (t|C) in r∞c , all non-constant normal
form instances of (t|C) are innermost-reachable from c.

For every S ∈ P(Σ0) and every term t in n∞S , it holds that t is a non-constant
normal form innermost-reachable from S.

Theorem 4. (completeness) For every constant c and every weak normal form
s reachable from c, there exists some constrained term t|C in r∞c such that s is
an instance of t|C, and ∀x ∈ Vars(t), d ∈ C(x) : |d→∗ xσ| < |c→∗ s|.

For every constant c and every non-constant normal form s innermost-reach-
able from c, there exists some constrained term ft1 . . . tm|C in r∞c such that s is
an instance of ft1 . . . tm|C.

For every S ∈ P(Σ0) and every normal form t innermost-reachable from S,
the term t belongs to n∞S .

We will not use the following lemma in the rest of the article. We include it here
as a consequence of the completeness Theorem and the WNF-representation
process itself, since it is interesting because establishes that the WNF-represen-
tation process computes a representative for every weak normal form that is
maximal in a certain sense.

Lemma 3. If ft1 . . . tm is a weak normal form innermost-reachable from a con-
stant c, then there exists a constrained term fα1 . . . αm|C in r∞c satisfying the
following for every ti. If ti is a constant then αi = ti. If ti is a non-constant
normal form, then αi is a variable and C(αi) is the set of all constants that
innermost-reach ti.

6.2 The Bounded WNF-Representation Process

The WNF-representation process gives a representation of all weak normal forms
reachable from any constant. The problem is that it may not terminate. The sets
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nS can increase indefinitely, and their new elements can contribute to generate
other new normal forms, and to change other sets nS′ to be not empty. If at some
point of the execution, no set nS is going to change from empty to non-empty
any more, then, the sets rc and rc will not change any more during the rest of the
execution. This is because when jumping from step 5 to step 2, the conditions
of the sets in the assignment of step 2 have not changed. Hence, if we give a
criteria for detecting that no nS is going to change from empty to non-empty
any more, we will be able to algorithmically determine the sets rc and rc. To this
end, we define the bounded WNF-representation process to be the same WNF-
representation process, but bounding the number of elements to be contained in
the variable sets nS . We allow them to contain at most m∗|P(Σ0)| elements, i.e.
m ∗ (2|Σ0| − 1). Hence the union ∪ operator in the assignment of step 4. has to
be changed to a modified union ∪, that is interpreted as any operator such that
A ⊆ A∪B ⊆ A ∪ B, |A∪B| ≤ m ∗ (2|Σ0| − 1), where |A∪B| is maximal under
these conditions.

The bounded WNF-representation process terminates, since the sets rc, rc

and nS can not increase indefinitely, and when none of them changes in the
corresponding steps 2. and 4., the process ends.

We will call rbnd
c , rbnd

c and nbnd
S to every set rc, rc and nS at the end of the

bounded WNF-representation process. It is clear that every rbnd
c , rbnd

c and nbnd
S

is included into its corresponding r∞c , r∞c and n∞S .
Suppose that we would execute a variation of the (non-terminating) WNF-

representation process consisting on changing step 1. to the new instruction:

1. For every constant c do rc := rbnd
c and rc := rbnd

c , and for every S ∈ P(Σ0)
do nS := nbnd

S .

In the limit we would obtain again r∞c and n∞S for every corresponding variable
rc, rc and nS . We will repeatedly use this fact when proving the following lemma
and corollary, referring to this variant as the bound-starting WNF-representation
process.

Lemma 4. |nbnd
S | ≥ minimum(|n∞S |,m)

Proof. For proving the statement, we will prove inductivelly on k that, if there
are at least k sets S in P(Σ0) such that nbnd

S �= n∞S , then, there exists at least
k sets S in P(Σ0) such that nbnd

S �= n∞S and |nbnd
S | ≥ m ∗ |P(Σ0)| −m ∗ (k − 1).

This automatically implies that |nbnd
S | ≥ minimum(|n∞S |,m) holds for every S ∈

P(Σ0), since m ∗ |P(Σ0)| −m ∗ (k − 1) ≥ m for all such k.
Hence, assume that there are at least k sets S in P(Σ0) such that nbnd

S �= n∞S . If
k = 1 the result trivially holds, since nbnd

S �= n∞S for some set S implies that some
set has reached m ∗ |P(Σ0)| elements during the bounded WNF-representation
process. If k > 1, by induction hypothesis, there exists k − 1 sets S in P(Σ0)
such that nbnd

S �= n∞S and |nbnd
S | ≥ m∗ |P(Σ0)|−m∗ (k−2). It rests to show that

there is an other set S′ different from these k− 1 sets such that nbnd
S′ �= n∞S′ and

|nbnd
S′ | ≥ m ∗ |P(Σ0)| −m ∗ (k − 1). We prove it by contradiction assuming that

such S′ does not exist. Hence, at this point we can classify the sets of P(Σ0)
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into three kinds. The sets of kind (i) are those k − 1, i.e. the sets S such that
nbnd

S �= n∞S and |nbnd
S | ≥ m ∗ |P(Σ0)| −m ∗ (k − 2). The sets of kind (ii) are the

sets S′ such that nbnd
S′ �= n∞S′ and |nbnd

S′ | < m ∗ |P(Σ0)| −m ∗ (k− 1). The sets of
kind (iii) are the sets S′′ such that nbnd

S′′ = n∞S′′ . If we execute the bound-starting
WNF-representation process, at some execution point T there is a set S′ of kind
(ii) such that nS′ increases for the first time, i.e. for every S′ of kind (ii), nS′

preserves its initial value until T . The assignment that increases nS′ is the one
of item 4., that we write as follows indicating which values coincide with the
ending values in the bounded WNF-representation process (for example, note
that no rd nor rd has changed until T , since no set nS has changed from empty
to non-empty until T ; hence, the chosen t|C is also in all rbnd

d ).

nS′ :=nbnd
S′ ∪ {tσ

∣∣ ∃C :∀d ∈ S′ : (t|C) ∈ rbnd
d up to renaming, and

∀x ∈ Dom(C) : (xσ ∈ nC(x)) and
tσ is a non-constant normal form }

Let x1 . . . xk be the variables of Dom(C) ordered in any way such that, if
C(xi) is of kind (ii) or (iii) and C(xj) is of kind (i), then i < j. We construct
a new substitution θ defined on these variables, recursivelly from x1 to xk. We
consider the variable xi and assume that θ is already defined for the previous
ones. If C(xi) is of kind (ii) or (iii), then we define xiθ := xiσ (note that in this
case xiσ ∈ nbnd

C(xi)
). If C(xi) is of kind (i), we chose p to be any of the positions

such that t|p = xi, and we chose any term ti of nbnd
C(xi)

different from all terms
in {s|p

∣∣ s ∈ nbnd
S′ } and different from all x1θ, . . . , xi−1θ (note that this is

possible since m < |nbnd
C(xi)

|− |nbnd
S′ |). By the construction of θ, every xiθ belongs

to nbnd
C(xi)

, and tθ is different from all terms in nbnd
S′ .

Note that all the xi are replaced to non-constant normal forms by θ, as σ
does, and in the variables where θ and σ differ, θ replaces each of these variables
by a term different from all the rest of term replacements by θ. Hence, tθ is a
non-constant normal form since tσ is.

Previous facts imply that the term tθ will be added to nS′ during the exe-
cution of the bounded WNF-representation process, and hence, that tθ belongs
to nbnd

S′ . But they also imply that tθ does not belong to nbnd
S′ , and this is a

contradiction. 	


Corollary 1. For every S ∈ P(Σ0), it holds that nbnd
S is empty if and only if n∞S

is empty. Moreover, for every c ∈ Σ0, it holds that rbnd
c = r∞c and rbnd

c = r∞c .

Proof. The first statement is a direct consequence of Lemma 4. The second state-
ment is a direct consequence of the first, and the fact that the bound-starting
WNF-representation process starts with rc = rbnd

c and rc = rbnd
c , and will not

produce any modification of the rc’s and rc’s. This is because the assignment in
step 2. of the WNF-representation process introduces new elements only when
some nS has changed from empty to non-empty. 	
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7 Decidability of Reachability

Given two terms s and t and a flat TRS R, we want to check whether t is
innermost-reachable from s by R. We assume that s and t are ground: otherwise
the variables can be replaced by new constants preserving the answer.

First of all we show how this problem can be reduced to a simpler one, where
one can assume that s is a constant. Given an input 〈s, t, R〉 of the general
reachability problem, we construct a new constant cs′ for every subterm s′ of s.
For every subterm of s of the form fs1 . . . sm we construct a new rule cfs1...sm →
fcs1 . . . csm . For every constant subterm d of s we construct a new rule cd → d.
Let R′ be the TRS R extended with these new rules. Then, R′ is also flat, and
s →∗

R t if and only if cs →∗
R′ t. The only if part is obvious, and the if part is a

straightforward consequence of the fact that u →R′ v implies NFR′−R(u) →0,1
R

NFR′−R(v), where NFR′−R( ) refers to the unique normal form with respect to
R′−R. Hence, the initial problem can be reduced to a simpler instance 〈cs, t, R〉.
input: 〈c, t, R〉

1. compute all rd’s with the ”WNF representation algorithm” with R. Let T
be the set of all subterms of t.

2. REACH:={〈d, e〉|d, e ∈ Σ0 ∧ e|∅ ∈ rd}.
3. REACH:=REACH ∪

{〈d, fs1 . . . sm〉 ∈ Σ0 × T
∣∣ ∃fs′1 . . . s′m|C ∈ rd : ∀i, j ∈ {1 . . .m} :

( (s′i �∈ Σ0 ∧ s′i = s′j ⇒ si = sj)∧
( (s′i ∈ Σ0 ∧ 〈s′i, si〉 ∈ REACH)∨

(s′i �∈ Σ0 ∧ si is a normal form ∧
∀e ∈ C(s′i) : 〈e, si〉 ∈ REACH)))} ∪

{〈d, s〉 ∈ Σ0 × T
∣∣ ∃x|{(x, S)} ∈ rd : ∀e ∈ S :

((e, s) ∈ REACH ∧ s is a normal form)}

4. If REACH has changed then repeat previous step.
5. Give positive answer if 〈c, t〉 ∈ REACH, and negative answer otherwise.

Lemma 5. At the end of the previous algorithm, REACH contains exactly the
pairs 〈d, s〉 such that d is a constant, s is a subterm of t, and d→∗ s.

8 Decidability of Joinability

Given two terms s and t and a flat TRS R, we want to check whether s and t
are innermost-joinable by R. As before, we can assume that s and t are ground.

Similarly to the previous section, this problem can be reduced to joinability
of constants. The transformation is identical: we construct a new constant cu for
every subterm u of s or t, and extend R to R′ by adding a new rule cfu1...um →
fcu1 . . . cum for every subterm fu1 . . . um of s or t, and a new rule cd → d for
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every constant subterm d of s or t. The instance 〈s, t, R〉 is then transformed
into 〈cs, ct, R′〉.

In the following we describe an algorithm to solve this simplified problem.

input: 〈c1, c2, R〉

1. compute all rd’s and nbnd
d ’s with the ”WNF representation algorithm” with

R.
2. make JOIN := {〈c, d〉

∣∣ ∃c′|∅ ∈ rc ∩ rd} ∪ {〈c, d〉 ∣∣ nbnd
{c,d} �= ∅}

3. JOIN := JOIN ∪
{〈c, d〉

∣∣; ∃ fs1 . . . sm|C ∈ rc, f t1 . . . tm|D ∈ rd : ∀1 ≤ i ≤ m :
( (si, ti ∈ Σ0 ∧ 〈si, ti〉 ∈ JOIN)∨

(si ∈ Σ0, ti �∈ Σ0 ∧ nbnd
{si}∪D(ti)

�= ∅)∨
(si �∈ Σ0, ti ∈ Σ0 ∧ nbnd

C(si)∪{ti} �= ∅)∨
(si, ti �∈ Σ0 ∧ nbnd

C(si)∪D(ti)
�= ∅))}

4. If JOIN has changed then repeat previous step.
5. Give positive answer if 〈c1, c2〉 ∈ JOIN, and negative answer otherwise.

Lemma 6. The algorithm given above decides if two constants are innermost-
joinable.

The previous algorithm is not useful if we restrict again to the more efficient
algorithm for the left-linear case, since the WNF-representation algorithm pro-
vided in Section 5 computes the sets rc, but not the sets nS . Nevertheless, note
that for this case we just need to know if sets of the form n{c,d} are empty, i.e. if
two constants c and d reach a common non-constant normal form. The following
algorithm computes all pairs of constants satisfying this property.

input: R

1. compute all rd’s with the ”WNF representation algorithm for left-linear
TRS” with R.

2. JOINNF:=∅
3. JOINNF:=JOINNF ∪

{〈c, d〉
∣∣∃fs1 . . . sm|C ∈ rc, f t1 . . . tm|D∈ rd :
(fs1 . . . sm is a normal form, and ∀1 ≤ i ≤ m :
( (si, ti ∈ Σ0 ∧ si = ti)∨
(si, ti �∈ Σ0 ∧ ∃ci, di ∈ Σ0 : (C(si) = {ci} ∧D(ti) = {di}∧

〈ci, di〉 ∈ JOINNF))))}
{〈c, d〉

∣∣∃x|{(x, {c′})} ∈ rc : 〈c′, d〉 ∈ JOINNF}
{〈c, d〉

∣∣∃x|{(x, {d′})} ∈ rd : 〈c, d′〉 ∈ JOINNF}

4. If JOINNF has changed then repeat previous step.

Lemma 7. At the end of the execution of the previous algorithm with a left-
linear TRS, JOINNF contains all pairs 〈c, d〉 such that c and d innermost-reach
a common non-constant normal form t.
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9 Complexity

Given a flat TRS R with size bounded by n, the bounded WNF-representation
process requires to compute the sets rc and nS . There are at most n constants,
and at most |P(Σ0)| sets, i.e. (2|Σ0| − 1). The elements in every set rc are
of the form fα1 . . . αm|C, where every αi is either a constant, or a variable
that coincides with some of the previous α1 . . . αi−1, or a different variable from
previous ones and with a related set in C. Hence, the number of elements in every
set rc is bounded by m ∗ (n +m+ |P(Σ0)|). By the conditions of the bounded
WNF-representation algorithm, every nS will contain at most m ∗ (2|Σ0| − 1)
elements. The assignments do simple operations of matching on these data, and
hence, their cost is 2O(n). Since the bounded WNF-representation process ends
when no set is changed any more, the number of execution steps is also bounded
by the maximum size of the sets rc’s and nS ’s. Altoguether implies that this
algorithm is exponential (2O(n)) in size and space.

Our algorithms for reachability and joinability add first some new constants
and rules, but less than the size of the input (n changes to 2n at most), and then,
require the computation of the WNF representation. After that, the algorithm for
reachability computes at most if every constant reaches every subterm of t. this
is done recursivelly, and every of such checks needs again some simple operations
of matching on the WNF representation. This is similar for joinability, where all
pairs of constants are considered at every step of the algorithm and there are
at most as steps as pairs of constants. Again, every step corresponds to some
operations of matching on the WNF representation. Altoguether implies that
these algorithms are exponential (2O(n)) in size and space.

Exptime-hardness of these problems can be shown with an identical proof to
the one given in [7] for the general (not necessarily innermost) case.

Theorem 5. The innermost-reachability and innermost-joinability problems for
shallow TRS are EXPTIME-complete, when the maximum arity m of the signa-
ture is fixed for the problem.

With respect to the left-linear case, in Section 5 we have already seen that the
time complexity of the WNF-representation algorithm is (n+m)O(m), and hence,
polynomial time if we assume that the maximum arity m of the signature is a
constant. The algorithms of Sections 7 and 8 for computing the sets REACH, JOIN
and JOINNF are just fixpoint computations of pairs of elements from sets with
polynomially bounded size on the input. The operations at every step of the
fixpoint computation consist in searches on the sets REACH, JOIN and JOINNF,
and on the WNF-representation. Hence, we conclude that the time complexity
is again polynomial for the reachability and joinability problems.

Theorem 6. The innermost-reachability and innermost-joinability problems for
shallow left-linear TRS are decidable with polynomial time complexity, when the
maximum arity m of the signature is fixed for the problem.
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Abstract. Termination and innermost termination are shown to be de-
cidable for term rewrite systems whose right-hand side terms are re-
stricted to be shallow (variables occur at depth at most one) and linear.
Innermost termination is also shown to be decidable for shallow rewrite
systems. In all cases, we show that nontermination implies nontermi-
nation starting from flat terms. The proof is completed by using the
useful enabling result that, for right shallow rewrite systems, existence
of nonterminating derivations starting from a given term is decidable. We
also show that termination is undecidable for shallow rewrite systems.
For right-shallow systems, general and innermost termination are both
undecidable.

1 Introduction

Termination is an important property of computing systems and it has generated
significant renewed interest in recent years. There has been progress on both
the theoretical and practical aspects of proving termination of many different
computing paradigms - such as term rewrite systems, functional programs, and
imperative programs. Innermost termination refers to termination of rewriting
restricted to the innermost strategy, which forces the complete evaluation of all
the subterms before the rule application at a position. It corresponds to the ”call
by value” computation of programming languages. A typical example of a rewrite
system that is innermost terminating but not terminating is the following [12].

{f(0, 1, x)→ f(x, x, x), c→ 0, c→ 1}
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The non-terminating derivation

f(0, 1, c)→ f(c, c, c)→2 f(0, 1, c) . . .

is not possible with innermost rewriting, since c has to be normalized before any
rule application at position λ in f(0, 1, c).

This paper focuses on termination and innermost termination of term rewrite
systems (TRS). For results on termination of imperative programs, the reader is
referred to [6,11,2,1]. There has been steady progress on the problem of deciding
if a term rewrite system is terminating. While termination is undecidable for gen-
eral term rewrite systems and string rewrite systems [7], several subclasses with
decidable termination problem have been identified. Termination is decidable in
polynomial time for ground term rewrite systems [7,9]. Termination is decidable
for right-ground term rewrite systems [3] and also for the more general class that
also has right-variable rules [4]. Later, termination was shown to be decidable
for rewrite systems that contain right-ground, collapsing, or shallow right-linear
rewrite rules [5]. There were further decidability results about shallow left-linear
and shallow right-linear rewrite systems [13].

This paper presents a new decidability result that subsumes some of the above
results. In particular, we show that termination (and innermost termination
as well) is decidable for rewrite systems whose right-hand side terms are both
shallow and linear, that is, variables occur at depth at most one and no variable
occurs more than once on the right-hand side terms. There is no restriction on
the left-hand side terms. Thus, right-ground systems and shallow right-linear
systems are both contained in our class.

The proofs presented in this paper are simple, self-contained and not depen-
dent on any other results. At the top-level, we argue that if a right flat-linear
rewrite system is nonterminating, then there is a nonterminating derivation
starting from a constant or a ground flat term (Section 6). To complete the
proof, we prove a (stronger) result: termination of right shallow systems starting
from a given term is decidable (Section 4). In other words, nontermination is
semi-decidable for right shallow systems. Using similar arguments, we also show
that innermost termination of flat term rewrite systems is decidable (Section 5).
This last result is in sharp contrast to the undecidability of general termination
for flat rewrite systems (Section 7). We also show undecidability of general and
innermost termination for right shallow rewrite systems (Section 7).

2 Preliminaries

A signature Σ = ∪iΣi is a finite set of function symbols and constants indexed
by their arity i. Thus, Σ0 is the set of constants in Σ. A term t over Σ is
constructed from the symbols in Σ and a set of variables in the usual way. To
reduce clutter, we write ft1 . . . tm instead of the standard notation f(t1, . . . , tm)
for a term. A position is a string of natural numbers (including the empty string
λ). We use . as the string concatenation operator and |p| to denote the length
of the string p. Given a term t and a position p, the subterm of t at position p,
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denoted by t|p, is defined to be (i) t, if p = λ, (ii) ti|p′ if t = ft1, . . . , tm and
p = i.p′ and 1 ≤ i ≤ m, and (iii) ⊥, otherwise. The set Pos(t) consists of all
positions p such that t|p �= ⊥. The subterm t|p of t is said to be at depth |p|.

We write p1 > p2 (equivalently, p2 < p1) and say p1 is below p2 (equivalently,
p2 is above p1) if p2 is a proper prefix of p1, that is, p1 = p2.p

′
2 for some nonempty

p′2. Positions p and q are disjoint if p �≥ q and q �≥ p. When p1 is of the form
p2.p

′
2, p1 − p2 denotes p′2.

The height of a term t, height(t), is zero if t is a variable or a constant, and
it is 1 + max{height(ti ) : i = 1, . . . ,m} if t = ft1 . . . tm. A term t is said to be
flat if its height is at most one. A term t is shallow if all variables in t occur at
depth at most one. A term t is linear if no variable occurs more than once in t.

The set of all subterms of a term s is denoted by !s". A term t is said to be
reachable from s if s →∗

R t. A term t is said to be context-reachable from s if
there exists a context C[ ] such that s→∗

R C[t].
A rewrite system R is a finite set of rewrite rules l → r, where l and r are

terms. A rewrite step, using the rule l → r, applied to a term s at position p, is
denoted by s →l→r,σ,p s[rσ]p, where σ is a substitution such that lσ ≡ s|p. We
do the usual assumptions for the rules l → r of a rewrite system R, i.e. l is not
a variable, and all variables occurring in r also occur in l. A rewrite system R is
terminating from s if there are no infinite R-derivations, s →R s1 →R · · ·. If R
is terminating from every term, then R is said to be terminating.

A term s is R-irreducible if there is no term t such that s→R t. A rewrite step
s→R,p t is an innermost rewrite step if s|p′ is R-irreducible, for all p′ > p. The
concepts of reachability and termination can be naturally defined for innermost
rewriting.

A rewrite system R is (right-)shallow, respectively flat/linear, if all (right-
hand side) terms in R are shallow, respectively flat/linear.

3 Flattening and Other Simplifying Assumptions

The discussion of this section is written for general termination, but it is also
valid when we interpret termination as innermost termination, reachability as
innermost reachability, and so on. To this end, in the innermost case we assume
that for a given TRS, all the rules l → r such that l has a proper subterm that
is not a normal form have been removed. Note that these rules can not be used
in an innermost derivation.

For purposes of deciding termination of R, we show that we can assume,
without loss of any generality, that all shallow terms in the rewrite system R are
indeed flat. This observation follows from the following result.

Proposition 1. Let R be a rewrite system containing a rewrite rule l[u]→ r[v]
such that u and v are ground. Let c and d be two new constants. Then, R is
(innermost-)terminating iff R′ := R − {l → r} ∪ {l[c] → r[d], u → c, d → v} is
(innermost-)terminating.

Proof. (Sketch) Any rewrite step s →R t can be simulated by a R′-derivation:
if the R rewrite step does not use l[u] → r[v], then s →R′ t; if it does, then
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s := s[l[u]] and t := s[r[v]] and the corresponding R′-derivation is s[l[u]] →
s[l[c]]→ s[r[d]] → s[r[v]].

Any R′-derivation s1 →R′ s2 →R′ · · · can be simulated by the R-derivation
s1σ →∗

R s2σ →∗
R · · ·, where σ is the substitution {c �→ u, d �→ v}. It can be seen

that infinite R′-derivations necessarily map to infinite R-derivations. 	

As a second simplifying assumption, we note that we can assume, again without
loss of generality, that the signature Σ of R contains constants and exactly one
m-ary function symbol. If Σ contains multiple n-ary function symbols (n > 0),
then we choose m to be one plus the maximum arity of a function symbol in
Σ. Let Σ′ := Σ′

0 ∪ Σ′
m, where Σ′

0 := Σ and Σ′
m = {f}. Now, if g(s1, . . . , sn) is

a term over Σ, we encode it by the term f(encode(s1), . . . , encode(sn), g, . . . , g)
over Σ′, where encode(si) recursively encodes si and the g ∈ Σ′

0 is used as
padding to get m arguments for f . This encoding of terms can be extended to
rewrite systems. It is easy to see that this encoding preserves the termination
property of rewrite systems.

4 Right Flat Systems

In this section, we will show that, given a right shallow rewrite system R and
a term s, it is decidable if R is terminating from s. In particular, this implies
that nontermination is semi-decidable for right shallow rewrite systems. We will
show that termination is undecidable for right shallow systems in Section 7. A
right shallow system can be transformed into a right flat rewrite system, while
preserving its termination property, similarly to what is shown in Section 3.
Henceforth, in this section, R is a right flat TRS.

The proofs of this section are written for general termination, but they are
also valid when we interpret termination as innermost termination, reachability
as innermost reachability, and so on.

An important property of a right flat system R is that if s →∗
R t, then every

subterm of t is reachable from either a constant or some subterm of s. We prove
this and other useful consequences by inductively marking each position of a
term (in the above derivation) by the witness term from !s" ∪Σ0 as follows:
Base Case: For the term s, the marking is given by Ms(p) = s|p for all positions
p of s.
Induction Step: Consider the rewrite step, u→l→r,p v, where we have the map-
pingMu : Pos(u) �→ !s"∪Σ0. We construct the mappingMv : Pos(v) �→ !s"∪Σ0

as follows:

1. if p′ �> p, then Mv(p′) := Mu(p′),
2. if p′ = p.p0, |p0| = 1, and r|p0 is a constant, then Mv(p′) := r|p0 .
3. for every p0 such that r|p0 is a variable we choose any position q0 in l such

that l|q0 = r|p0 and then for every p′ = p.p0.p1, |p0.p1| ≥ 1, we define
Mv(p′) := Mu(p.q0.p1).

Note that we are assuming that every variable on the right-hand side also appears
on the left-hand side; if not, then the rewrite system is trivially nonterminating.
One easy property of the markings is that v|p is reachable from Mv(p).
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Lemma 1. For a right flat R, if the derivation s→∗
R t is marked as above, then

t|p is (innermost-)reachable from Mt(p) for all p ∈ Pos(t). In particular, if s is
a constant, all subterms of t are (innermost-)reachable from a constant.

Moreover, Mt(λ) = s, and if s is not a constant, then for any p ∈ Pos(t) with
p �= λ we have Mt(p) �= s.

Proof. The claim is proved inductively on the length of the derivation s →∗
R t.

The base case is trivial. For the induction step, suppose u →l→r,p v and u|p′ is
reachable from Mu(p′) for all p′ ∈ Pos(u). Consider any p′ ∈ Pos(v). We show
that v|p′ is reachable from Mv(p′) as follows:

– If p′ ≤ p, then we have Mv(p′) = Mu(p′)→∗
R u|p′ →l→r,p−p′ v|p′ .

– If p′ = p.p0, |p0| = 1, and r|p0 is a constant, then Mv(p′) = r|p0 is reachable
from v|p′ = r|p0 .

– If p′ = p.p0.p1, |p0.p1| ≥ 1, and r|p0 is a variable, then, for some q0, Mv(p′) =
Mu(p.q0.p1), v|p′ = u|p.q0.p1 , and u|p.q0.p1 is reachable from Mu(p.q0.p1) by
induction hypothesis.

– If p′ ‖ p, then the claim holds by induction hypothesis again as v|p′ = u|p′

and Mv(p′) = Mu(p′).

The second statement of the lemma follows from the construction of the mapping
function. This completes the proof. 	


A second property of markings is that Mv(p) is context-reachable from Mv(p′)
for all p′ ≤ p.

Lemma 2. For a right flat R, if the (innermost-)derivation s→∗
R t is marked as

above, then for all p, p′ ∈ Pos(t) such that p′ < p, Mt(p) is (innermost-)context
reachable from Mt(p′). Moreover, if Mt(p) and Mt(p′) are both constants, then
Mt(p) is (innermost-)context reachable from Mt(p′) in one or more steps.

Proof. The claim is proved inductively on the length of the derivation s →∗
R t.

The base case is trivial. For the induction step, suppose u →l→r,p v is the last
step of the derivation and the claim is true for u. Consider any p′ ∈ Pos(v). We
prove the claim for all p′′ < p′ as follows:

– If p′ ≤ p or p′ ‖ p, then we have Mv(p′) = Mu(p′) and Mv(p′′) = Mu(p′′) for
all p′′ ≤ p′, and hence, by induction hypothesis, the claims follow.

– If p′ = p.p0, |p0| = 1, and r|p0 is a constant, then Mv(p′) = r|p0 . Now
consider any p′′ < p′. By Lemma 1, v|p′′ is reachable from Mv(p′′). Note
that Mv(p′) is a subterm of v|p′′ . Hence, Mv(p′) is context reachable from
Mv(p′′).
If Mv(p′′) is a constant, then v|p′′ is reachable from Mv(p′′) in one or more
steps. Hence, Mv(p′) is context reachable from Mv(p′′) in one or more steps.

– If p′ = p.p0.p1, |p0.p1| ≥ 1 and r|p0 is a variable, then, for some q0, Mv(p′) =
Mu(p.q0.p1). There are two cases. (a) If p′′ ≤ p, then Mv(p′′) = Mu(p′′)
and, by induction hypothesis, Mu(p.q0.p1) is context reachable from Mu(p′′),
which is the same as saying that Mv(p′) is context reachable from Mv(p′′).
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(b) If p′′ > p, then Mv(p′′) = Mu(p.q0.p′1) for some p′1 < p1 and, by induction
hypothesis, Mu(p.q0.p1) is context reachable from Mu(p.q0.p′1). This is the
same as saying that Mv(p′) is context reachable from Mv(p′′). In both cases,
the second part of the claim is immediate by induction.

This completes the proof. 	


Finally, a third observation about the markings is that positions that are below
height(s) are always marked by constants.

Lemma 3. For a right flat R, if the (innermost-)derivation s →∗
R t is marked

as above, then for all p ∈ Pos(t) such that |p| > height(s), Mt(p) is always a
constant.

Proof. This is proved inductively on the length of the derivation. For the base
case, t = s and the claim is vacuously true. We just need to show that the prop-
erty is preserved by every rewrite step, say u →l→r,p v. Consider any position
p′ ∈ Pos(v) such that |p′| > height(s).
(i) If p′ ‖ p or p′ ≤ p, then Mv(p′) = Mu(p′) and by induction hypothesis Mu(p′)
will be a constant.
(ii) If p′ = p.p0, |p0| = 1 and r|p0 is a constant, then Mv(p′) = r|p0 , which is a
constant.
(iii) If p′ = p.p0.p1, |p0.p1| ≥ 1 and r|p0 is a variable, then Mv(p′) = Mu(p.q0.p1)
for some q0 and |p.q0.p1| ≥ |p′|. Hence induction hypothesis is applicable and we
can conclude that Mu(p.q0.p1), and therefore Mv(p′), is a constant. 	


A simple consequence of Lemma 2 and Lemma 3 is that if R is terminating from
s, then the height of terms reachable from s is computationally bounded.

Corollary 1. Let R be a right flat TRS, s any term. Then, if R is (innermost)
terminating from s, then for any term t (innermost) reachable from s, we have
height(t) ≤ height(s) + |Σ0|.

Proof. We mark the derivation s →∗
R t as above. Now, suppose height(t) >

height(s) + |Σ0|. By Lemma 3, each position in t that is deeper than height(s)
is marked with a constant. Since height(t) > height(s) + |Σ0|, by pigeon-hole
principle, there are two positions p, p′ ∈ Pos(t) such that p < p′ and Mt(p) =
Mt(p′) and Mt(p) is a constant, say c. By Lemma 2, it follows that c is context
reachable from c in one or more steps. Moreover, by Lemma 1 the position λ
of every term in a derivation is marked with s. Using Lemma 2 again, we infer
that Mt(p), or c, is also context reachable from s. Thus, we have a derivation
s →∗

R C1[c] →+
R C1[C2[c]] →+

R C1[C2[C2[c]]] →+
R . . .. Hence, there is an infinite

derivation starting from s. 	


Using the above corollary, we can show that the existence of nonterminating
derivations starting from a term is decidable for right flat systems.

Theorem 1. Termination (innermost-termination) of a right flat TRS R from
a given term is decidable. Hence, nontermination (innermost-nontermination)
is semi-decidable for right flat rewrite systems.
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Proof. Let s be any term. We enumerate all derivations starting from s. If we
reach a term with height greater than height(s) + |Σ0|, then by corollary 1 we
know that R is nonterminating from s. Otherwise, we will get only finitely many
reachable terms. If there is a derivation that cycles among these terms, then R
is nonterminating from s. If not, then R is terminating from s. 	


Remark: We state below a related and new (up to our knowledge) theorem that
uses a similar argument as the proof of Theorem 1.

Theorem 2. Let C be a class of TRS’s that are effectively regularity preserving,
and s a term. Termination of the TRS’s of C from s is decidable.

Proof. (sketch) The regular set S of terms reachable from s can be checked to
be infinite, in which case we know that there exists an infinite derivation from s.
Otherwise, we have a finite number of terms reachable from s, and we can check
for the existence of a cycle. 	


We shall not use Theorem 2 in this paper. However, we note here that, using
recent results on regularity preserving systems [10], we immediately get very
simple proofs of known decidability results, such as for right-ground systems [3]:
a right-ground system is regularity preserving, and is non-terminating iff it is
non-terminating from some right-hand side, which can be checked for every one
using Theorem 2.

5 Innermost Termination of Flat TRS’s

In this section, we show that innermost termination of flat rewrite systems is
decidable. In sharp contrast, general termination is undecidable for flat rewrite
systems (Section 7).

Let R be a flat rewrite system. We show decidability of innermost termina-
tion of flat systems by showing that for nonterminating R, there is an infinite
derivation starting with either a constant or a flat term. Using Theorem 1, we
know that these checks are decidable.

Lemma 4. Let R be a flat rewrite system that is not innermost terminating.
Then, there is an infinite innermost derivation starting from a constant or a
ground flat term.

Proof. We assume that there is no infinite derivation from a constant and we
show that there is one from a flat term.

Since R is not innermost terminating, there exists an infinite innermost deriva-
tion t0 →R t1 →R . . . whose first step is at position λ. We first prove that for
every i, every subterm at depth 1 of ti is either reachable from a constant, or in
normal form. First note that no term ti is a constant, by our initial assumption.
Now, we finish the proof of the claim by marking the derivation as above. By
construction of marking, for any i, the mark at any depth 1 subterm of ti is
either a constant or a proper subterm of t0. Now, since we use innermost rewrit-
ing, all proper subterms of t0 are in normal form. By Lemma 1, all subterms at
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depth 1 of ti are reachable from their markings, hence they are reachable from
constants, or they are in normal form.

Now, we note that there exists at least one constant, call it c, that is in
normal form. If not, any ground term can be innermost rewritten to another
ground term, and hence there will be infinite derivations from constants, which
contradicts our initial assumption.

We construct a new derivation t′0 →R,λ t′1 →R . . . by defining each t′i to
be as ti but replacing every subterm at depth 1 that is not reachable from
any constant by the constant c chosen above. We need to show that the new
derivation is “correct”, that is, there is a rewrite step from t′i−1 to t′i. Consider
the corresponding step ti−1 →l→r,p ti.
(i) If p �= λ, then p occurs inside a subterm at depth 1 that is necessarily
reachable from a constant, since otherwise this subterm would be in normal
form. Therefore, the same rewrite step can be applied on t′i−1 to produce t′i.
(ii) If p = λ, then, by our initial assumption, both l and r are not constants.
Moreover, r can not be a variable, since, otherwise, ti would be in normal form
(and the derivation would be finite). Hence, l → r is of the form fα1 . . . αm →
fβ1 . . . βm. If σ is the substitution used in this rewrite step, let σ′ be as σ except
for the cases where xσ is not reachable from a constant, in which case we define
xσ′ = c. Clearly, t′i−1 →l→r,σ′,λ t

′
i.

The infinite derivation t′0 → t′1 → . . . is again innermost, and its initial term
t′0 satisfies that all their subterms at depth 1 are reachable from constants.
Therefore, there exists a flat term s such that s →∗

R t′0, and hence, there exists
an infinite derivation from a flat term s. 	


Lemma 4 and Theorem 1 together imply the following result.

Theorem 3. Innermost termination is decidable for flat TRS’s.

Proof. Since there are only finitely many constants and ground flat terms, using
Theorem 1, we can check if a given flat TRS R is not innermost terminating
starting from one of these terms. By Lemma 4, we will find a witness for non-
termination this way iff R is not innermost terminating.

6 Termination and Innermost Termination of Right
Flat-Linear TRS’s

A right flat-linear rewrite system has terms that are both flat and linear as
right-hand side terms in all rewrite rules. In this section, we show decidability of
termination and innermost termination for right flat-linear systems. Again, the
proofs of this section are written for general rewriting, but they remain valid for
innermost rewriting.

The proof of decidability of (innermost) termination for right flat-linear sys-
tems depends on two key observations. The first one is Lemma 1, which says
that for any (innermost) derivation s →∗

R t using a right flat R, every proper
subterm of t is (innermost) reachable from either a constant or a proper subterm
of s.
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The second key lemma is stated by first defining the following measure of a
term t:

|t| := |{p | t|p is not (innermost) reachable from a constant }|

Note that |t| depends on whether we are dealing with general or innermost
rewriting. The next lemma uses right linearity of R as well.

Lemma 5. Let R be a right flat-linear TRS. If s (innermost) rewrites to t, then
|s| ≥ |t|. Moreover, if s[fs1 . . . sm]p (innermost) rewrites to t at position p with
a rule fl1 . . . lm → r, and |s| = |t|, then, for every i in {1 . . .m}, if si is not
(innermost) reachable from a constant, then li is a variable.

Proof. Let s →l→r,p t be the rewrite step of the lemma. We prove the first
statement by constructing an injective map, from positions p′ of t such that
t|p′ is not reachable from a constant, to positions p′′ of s such that s|p′′ is not
reachable from a constant, as follows. If p′ ‖ p or p′ ≤ p, then we make p′′ := p′.
If p′ > p, then p′ can be written of the form p.p0.p1 where r|p0 is a height 0 term.
In fact, r|p0 can not be a constant since otherwise t|p′ would be a constant, and
hence, it is a variable. We choose a position p′0 such that l|p′

0
is the same variable

and set p′′ := p.p′0.p1. The injectivity of the map follows by right linearity of R.
Hence, |s| ≥ |t|.

For the second statement, we are given that |s| = |t|, s is of the form
s[fs1 . . . sm]p and l is of the form fl1 . . . lm. If a certain si is not reachable
from a constant, but li is not a variable, then p.i is not in the image of the
previous mapping, and hence |s| > |t|, contradicting |s| = |t|. Therefore, all such
li’s are variables. 	


The idea of the decidability proof is the same as that for Theorem 3, that is, we
show that if R is non-terminating, then it is non-terminating from a constant or
a flat term.

Lemma 6. Let R be a right flat and right linear rewrite system. If R is nonter-
minating (innermost-nonterminating), then there exists an infinite (innermost-)
derivation from a constant or a flat ground term.

Proof. Assume that there is no infinite derivation from a constant. We will show
that there is one from a flat term.

Since R is non-terminating, there exists an infinite derivation t0 →R t1 →R . . .
that we choose to be the one with minimal height for t0. Note that no term ti is
a constant, by our initial assumption, and hence, if a rule of the form l → r is
applied at λ, then neither l nor r is a constant.

First we show that no collapsing rule is applied at λ. This is immediate from
Lemma 1: if ti−1 →R ti is the first collapsing rule applied at λ, then by Lemma 1,
all subterms at depth 1 of ti−1 are either reachable from a constant or a proper
subterm of t0. Since ti is a proper subterm of ti−1, it is reachable from either a
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constant or a proper subterm of t0. In either case we have an infinite derivation
starting from a term with smaller height than t0, which contradicts our choice
of t0.

Now, we show that there are infinite rewrite steps at position λ. Suppose not.
Let ti−1 →R ti be the last rewrite step at position λ. Then, there is an infinite
derivation starting from some subterm at depth 1 of ti. As before, this subterm
is reachable from either a constant or a proper subterm of t0. Again, we have an
infinite derivation that contradicts the minimality of t0.

Hence, the infinite derivation t0 →R . . . has infinite rewrite steps at position
λ, and all those steps are using rules of the form l → fα1 . . . αm, where the
height of l is greater than or equal to 1. By Lemma 5, |ti−1| ≥ |ti| for all
i. Since this relation can not be indefinitely decreasing, for some n we have
|tn| = |tn+1| = |tn+2| = . . .. From the infinite derivation tn →R tn+1 →R . . . we
construct a new infinite derivation t′n →

0,1
R t′n+1 →

0,1
R . . . as follows. Analogously

to the proof of Lemma 4, we can deduce that there exists at least one constant
c that is a normal form (this is true for the innermost and the general case).
For every ti, we construct t′i to be equal to ti except for the subterms at depth
1 that are not reachable from constants, which are replaced by c. Formally,
t′i = ti[c]j1 . . . [c]jk

if ti|j1 , . . . , ti|jk
are the subterms at depth 1 in ti that are not

reachable from constants.
We show that the new derivation is correct by analyzing each rewrite step

ti−1 →R ti and its corresponding t′i−1 →
0,1
R t′i.

(i) If ti−1 →R ti is at a position inside a subterm at depth 1 of ti−1 that is
reachable from a constant, then, the same rewrite step can be applied on t′i−1

to produce t′i.
(ii) If ti−1 →R ti is at a position inside a subterm, say ti−1|j , at depth 1 of ti−1

that is not reachable from a constant, then, t′i−1 = t′i. This is because ti|j is also
not reachable from a constant, as |ti|j | = |ti−1|j | ≥ 1, and by Lemma 1, if ti−1|j
was reachable from a constant then all its subterms would be, and |ti−1|j | = 0.
Hence, t′i−1 →0 t′i.
(iii) If ti−1 →R ti is at position λ, then, by Lemma 5, if fl1 . . . lm → r and σ
are the rule and substitution applied, then lk is a variable for every position k
such that ti−1|k is not reachable from a constant. We define a new substitution
σ′ to be equal to σ except for such variables lk, for which we define lkσ′ = c.
The same rule fl1 . . . lm → r applied to t′i−1 at position λ and with substitution
σ′ produces t′i.

Since every rewrite step ti−1 →R ti at position λ corresponds to a rewrite
step t′i−1 →1

R t′i, and there are infinite such steps, it follows that the derivation
t′n →

0,1
R t′n+1 →

0,1
R . . . is infinite. Moreover, all subterms at depth 1 in t′n are

reachable from constants. Therefore, there exists a flat term t such that t→∗
R t′n,

and hence, there exists an infinite derivation from a flat term t. 	


Now, the main result follows immediately from Lemma 6 and Theorem 1.

Theorem 4. Termination and innermost termination are both decidable for
right shallow-linear rewrite systems.
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7 Undecidability Results

In this section, we prove undecidability of termination for shallow systems. This
is done by a reduction from the Post correspondence problem (PCP) restricted
to nonempty strings, i.e.:
{〈u1, v1〉 . . . 〈un, vn〉 | ∀1 ≤ i ≤ n : (ui �= λ ∧ vi �= λ) ∧

∃k > 0, 1 ≤ i1 ≤ n, . . . , 1 ≤ ik ≤ n : (ui1 · · ·uik
= vi1 · · · vik

)}
Since nontermination is semi-decidable for shallow rewrite systems (Theo-

rem 1), we will reduce the restricted PCP to nontermination of shallow rewrite
systems.

Theorem 5. Termination of shallow rewrite systems is undecidable.

Proof. Consider an instance 〈u1, v1〉 . . . 〈un, vn〉 of the restricted PCP, that is,
ui, vi are nonempty strings over alphabet Σ. We construct a shallow rewrite
system R such that this PCP instance has a solution iff R is non-terminating.

Let L = Max(|u1|, . . . , |un|, |v1|, . . . , |vn|)+ 2. We construct R over a signature
Σ′ given by

Σ′ := Σ′
0 ∪Σ′

1 ∪Σ′
2 ∪Σ′

6 ∪Σ′
8

Σ′
1 := Σ ∪ {Ui,j, Vi,j , Pi,j : i = 1 . . . n, j = 1 . . . L},

Σ′
0 := {U,U ′, V, V ′, P, P ′, P ′′, A,A′, A′′}

Σ′
2 := {f1}, Σ′

6 := {f3}, Σ′
8 := {f2}

The j’th symbol of ui and vi, whenever it exists, is denoted by ui,j and vi,j

respectively. The rewrite system R is defined as follows:

R := RU ∪RV ∪R2P ∪RP ′ ∪RP ′′ ∪RQ ∪Rα ∪Rw ∪Rf

RU := {Ui,1Ui,2 · · ·Ui,L(U)→ U ′, Ui,1Ui,2 · · ·Ui,L(U ′)→ U ′ : i = 1, . . . , n}
RV := {Vi,1Vi,2 · · ·Vi,L(V )→ V ′, Vi,1Vi,2 · · ·Vi,L(V ′)→ V ′ : i = 1, . . . , n}
R2P := {Ui,j(x) → Pi,j(x), Vi,j(x) → Pi,j(x) : i = 1, . . . , n, j = 1, . . . , L}
RP ′ := {Pi,1Pi,2 · · ·Pi,L(P ′)→ P ′ : i = 1, . . . , n}
RP ′′ := {Pi,1Pi,2 · · ·Pi,L(P ′′)→ P ′′ : i = 1, . . . , n}
RQ := {U → P,U → A, V → P, V → A,A→ A′, A→ A′′, P → P ′, P → P ′′}
Rα := {α(A′)→ A′, α(A′′)→ A′′ : α ∈ Σ}
Rw := {Ui,j(x) → ui,j(x) : 1 ≤ j ≤ |ui|} ∪ {Ui,j(x) → x : j > |ui|}

∪{Vi,j(x) → vi,j(x) : 1 ≤ j ≤ |vi|} ∪ {Vi,j(x) → x : j > |vi|}
Rf := {f1(x, y) → f2(x, y, x, y, x, y, x, y), f2(x, y, z, z, t, t, U ′, V ′) →

f3(x, y, z, z, t, t), f3(x, y, A′, A′′, P ′, P ′′)→ f1(x, y)}

⇒: We first show that if the PCP instance has a solution, then R is non-
terminating. Let w = ui1 . . . uik

= vi1 . . . vik
be a solution of the PCP instance.
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We show the existence of an infinite R-derivation starting from the ground term
s1 := f1(suu, svv), where

suu := Ui1,1 . . . Ui1,L . . . Uik,1 . . . Uik,L(U)
svv := Vi1,1 . . . Vi1,L . . . Vik ,1 . . . Vik,L(V )

We rewrite s1 using Rf to the term s2 := f2(suu, svv, suu, svv, suu, svv, suu, svv).
Now, we do not touch positions 1 and 2 of s2. We rewrite position 3 using
Rw ∪ {U → A} to w(A). We rewrite position 4 using Rw ∪ {V → A} to w(A).
We rewrite position 5 with R2P ∪ {U → P} to spp := Pi1,1 . . . Pi1,L . . . Pik,1 . . .
Pik,L(P ). Similarly, we rewrite position 6 with R2P ∪{V → P} to spp. We rewrite
positions 7 and 8 with RU and RV respectively to U ′ and V ′. As a result, we
reach the term s3 := f2(suu, svv, w(A), w(A), spp, spp, U

′, V ′).
Now, we use Rf to rewrite s3 to s4 := f3(suu, svv, w(A), w(A), spp , spp). Now

we use Rα ∪ {A → A′} in position 3 to get A′. Similarly, we rewrite position 4
to A′′. In position 5, we use RP ′ ∪ {P → P ′} to get P ′. Similarly, we rewrite
position 6 to P ′′. This way we get the term s5 := f3(suu, svv, A

′, A′′, P ′, P ′′),
which is rewritten by Rf to the starting term s1 := f1(suu, svv).
⇐: Suppose R does not terminate. We need to show that the PCP instance

has a solution. To this end we define the concept of UV -variant. We say that
a term s is a UV -variant of a term t, if t can be obtained from s by applying
several rewrite steps using rules of the subset {Ui,j(x) → x : i = 1 . . . n, j >
|ui|} ∪ {Vi,j(x) → x : i = 1 . . . n, j > |vi|} of Rw. Note that in this case, since
the original PCP instance has not λ in the words of their pairs, s and t have the
same number of occurrences of symbols of {Ui,1 : i = 1 . . . n}∪{Vi,1 : i = 1 . . . n}.

Now, note that since all rules in R are height-preserving or decreasing, there
is an infinite derivation with infinite rewrite steps at the top. We pick such
an infinite derivation, but with minimal height initial term t. Then, the head
of t has to be one of the fi’s. Otherwise, no infinite steps can be done at the
top preserving the height. Therefore, we have an infinite sequence f1(. . .) →∗

f2(. . .) →∗ f3(. . .) →∗ f1(. . .) →∗ . . . at the top. We can assume that we start
with a term of the form f1(u, v). By observing the Rf rules, one can deduce that
u and v reach A′, A′′, P ′, P ′′, and that u reaches U ′ and that v reaches V ′. This
is possible only if the terms u and v are UV -variants of terms of the form

suu := Ui1,1 . . . Ui1,L . . . Uik,1 . . . Uik,L(U)
svv := Vj1,1 . . . Vj1,L . . . Vjk′ ,1 . . . Vjk′ ,L(V )

But, moreover, these terms have to be joinable to a term of the form Pi1,1 . . . Pik,L

(P ), and also of the form Pj1,1 . . . Pjk′ ,L(P ). (Note here that since ui, vi are not
λ, Ui,1 . . . Ui,L(x) can not rewrite to x and hence the indices i1, . . . , ik, j1, . . . , jk′

will be preserved in any joinability proof.) Hence, k = k′ and ir = jr for all r. But
moreover, u and v have to be joinable to a term of the form ui1,1 . . . uik,L(A) =
vi1,1 . . . vik ,L(A). Hence, ui1 . . . uik

= vi1 . . . vik
and there is a solution of the

original PCP. 	

Theorem 6. Termination and innermost termination of right-shallow rewrite
systems is undecidable.
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Proof. Given an instance {(ui, vi) : i = 1, . . . , n} of Post correspondence prob-
lem, we generate the rewrite system R = {f(x)→ g(x, x, x), g(x, ui(y), vi(z))→
h(x, y, z), h(x, ui(y), vi(z))→ h(x, y, z), h(x, ε, ε)→ f(x)}. Here ε is a constant
representing the empty string. Note that R is right-shallow. It is easy to see that
the PCP instance has a solution iff R is (innermost) non-terminating.

We remark here that the recently published proofs of undecidability of reachabil-
ity, joinability and confluence of flat systems also use a reduction from PCP [8].
However, there are important differences and the construction in [8] can not be
used directly in the proof of Theorem 5.

8 Conclusions

In this paper we showed that, given a right shallow rewrite system and a term,
the existence of a (innermost) nonterminating derivation starting from the given
term is decidable. Using this general result, we showed that innermost termina-
tion is decidable for shallow rewrite systems. We also used the same result to
show decidability of general and innermost termination for right shallow-linear
rewrite systems. We demonstrated that dropping assumptions on the rewrite
systems leads to undecidability. In particular, general termination for shallow
rewrite systems is undecidable and both general and innermost termination for
right shallow rewrite systems is undecidable. As a result, we have narrowed the
gap between decidability and undecidability of termination of rewrite systems.
As further work it would be interesting to fix the exact complexity of these prob-
lems, but also to consider other classes of TRS, for example, basing its definition
in its corresponding set of dependency pairs, like in [13].
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Abstract. In a seminal paper, Huet introduced abstract properties of
term rewriting systems, and the confluence analysis of terminating term
rewriting systems by critical pairs computation. In this paper, we pro-
vide an abstract notion of critical pair for arbitrary binary relations
and context operators. We show how this notion applies to the conflu-
ence analysis of various transition systems, ranging from classical term
rewriting systems to production rules with constraints and partial con-
trol strategies, such as the Constraint Handling Rules language CHR.
Interestingly, we show in all these cases that some classical critical pairs
can be disregarded. The crux of these analyses is the ability to com-
pute critical pairs between states built with general context operators,
on which a bounded, not necessarily well-founded, ordering is assumed.

Dedicated to Gérard Huet on his 60th birthday.

1 Introduction

In a seminal paper [9], Huet introduced abstract properties of term rewriting
systems, and the confluence analysis of terminating term rewriting systems by
critical pairs computation. Since then, the notion of critical pairs obtained by su-
perposing the left-hand sides of rewriting rules has been applied to a wide variety
of rewriting systems, ranging from pure term rewriting systems (TRS), to TRS
in equational theories [14], conditional TRS [7], rewriting models of concurrency
[13], rewriting logic [12,4], higher-order rewriting [2] and graph rewriting [5,15].
Similarly, Knuth-Bendix like procedures [14,10,16] for completing non confluent
rewriting systems into confluent rewriting systems have been generalized to these
different settings.

To date however, although the notion of critical pairs has been adapted to
a variety of formalisms, there is no general definition of an abstract notion of
critical pairs from which the concrete definitions could be obtained as particu-
lar instances. In the categorical formulations of rewriting systems, the notion of
relative pushouts [11] does provide an abstract condition for contextual equiva-
lences but we are not aware of an abstract critical pair lemma in the categorical
setting. Recently, in the framework of canonical inference [3,6], notions of criti-
cality and completions have been developed for abstract proof systems, assuming
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a well-founded ordering on proofs. However, we will show that this assumption
is too strong for the confluence analysis of binary relations in dense structures,
and will illustrate this situation with a concrete example.

In this paper, we provide an abstract notion of critical pair for arbitrary
binary relations and context operators. We show how this notion applies to the
confluence analysis of term rewriting systems, conditional TRS, and production
rules with constraints such as the Constraint Handling Rules language CHR [8],
under both its naive semantics and its refined semantics with partial control
structures [1]. The crux of these analyses is the ability to compute critical pairs
between states built with general context operators, on which a bounded, not
necessarily well-founded, ordering is assumed.

The next section gives some preliminary notations about binary relations
and their composition. In section 3 we propose some abstract counterparts of
the notions of context, context compatibility and substitution stability from [9],
and prove an abstract critical pair theorem for establishing the confluence of
arbitrary binary relations. In section 4 we show how our abstract definitions can
be instantiated to prove the soundness of the classical notions of critical pairs in
ordinary TRS and conditional TRS. In section 5 we proceed similarly to show
the soundness of the classical definitions of critical pairs in CHR, respectively
under its naive semantics and under its refined semantics that includes a partial
control strategy stating that a rule is fired only once on the same instances [1].

Interestingly, we show in all these cases that some classical critical pairs can
be disregarded. We conclude on the generality of this work, and on some per-
spectives for future work.

2 Preliminaries

Let E be an arbitrary set and →⊂ E × E be an arbitrary relation on E, called
here reduction. We shall use the following notations and definitions:

– i = {e→ e | e ∈ E} is the identity relation on E ;
– ◦ is the composition : →a ◦ →b= {(e1, e2) | ∃e ∈ E (e1 →a e ∧ e→b e2)} ;
– →−1= {(e2, e1) | (e1 → e2} is the inverse relation of → ;
– →0= i and →n=→ ◦ →n−1 for n ≥ 1;
– →∗ = ∪i≥0 →i, the transitive-reflexive closure of → ;
– →ε =→ ∪ i;
– ↑= →∗ −1 ◦ →∗ , the common ancestor relation ;
– ��=→−1 ◦ →, the common direct ancestor relation.
– ↓= →∗ ◦ →∗ −1 the common descendent relation ;
– ↓ε= →ε ◦ →ε −1.
– → is noetherian if there is no infinite sequence e0 → e1 → . . .

– → is confluent if ∀e1, e2 ∈ E(e1↑e2 ⇒ e1↓e2).
– → is locally confluent if ∀e1, e2 ∈ E(e1 ��e2 ⇒ e1↓e2).
– → is strongly confluent if ∀e1, e2 ∈ E(e1 ��e2 ⇒ e1 ↓ε e2).
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Obviously, strong confluence implies confluence, and by Newman’s lemma we
know that a noetherian reduction relation is confluent if and only if it is locally
confluent [9]. A pair (e1, e2) of elements in E is →-joinable if e1↓e2, and →-
strongly joinable if e ↓ε e2. A set of pairs will be said →-joinable if all its pairs
are →-joinable.

3 Abstract Critical Pairs

3.1 Abstract Contexts

In all this section, a binary relation→⊂ E×E is assumed. We provide an abstract
counterpart of the notions of contexts, context compatibility and substitution
stability, introduced in [9] for TRS. To this end, we study families of operators on
E that generalize the operations of putting a term in a context or instantiating
a term by a substitution.

Definition 1 (→-compatible operators). An n-ary operator C : En → E is
→-compatible if C(e1, . . . , en) →∗ C(e1, . . . , ei−1, e

′, ei+1, . . . , en) whenever ei →
e′ for any index i, 1 ≤ i ≤ n.

Proposition 1. An n-ary operator C over E is →-compatible if and only if
C(e1, . . . , en) →∗ C(e′1, . . . , e

′
n) whenever ei →∗ e′i for all i, 1 ≤ i ≤ n.

Proposition 2
(i) The composition of →-compatible operators is →-compatible.
(ii) The projection πn

i = λx1 . . . xn.xi (with 1 ≤ i ≤ n) is →-compatible.
(iii) Permuting the arguments of an operator preserves its compatibility.

Proof To prove (i) let us suppose that C1 and C2 are two →-compatible op-
erators over E of arity n1 and n2 respectively. Let n = n1 +n2− 1 and let us
suppose ei →∗ e′i for all 1 ≤ i ≤ n. We have C1(ei, . . . , ei+n1) →∗ C1(e′i, . . . , e

′
i+n1

)
by the previous proposition, for any i, 1 ≤ i ≤ n2. Furthermore we have
C2(e1, . . . ei−1, C1(ei, . . . , ei+n1), ei+n1+1, . . . , en2) →∗ C2(e′1, . . . , e

′
i−1, C1(e′i, . . . ,

e′i+n1
), e′i+n1+1, . . . , e

′
n2

) since → and the identity relation are included in →∗ .
Hence the composition of C1 and C2 is →-compatible. For (ii) and (iii), the
→-compatibility of the projection operators and of any →-compatible operator
with a permutation of its arguments follows directly from the definition. �

Definition 2 (→-Contexts). A family of →-contexts is a family of →-com-
patible operators containing E (as constant operators) and closed by projection,
composition and argument permutation. We will denote by Cn the set of n-ary
contexts of C, for n ≥ 0.

3.2 Abstract Linear Contexts

Definition 3 (Linear →-contexts). An n-ary →-context C is linear if when-
ever ei → e′ then C(e1, . . . , en) →ε C(e1, . . . , ei−1, e

′, ei+1, . . . , en).
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A linear →-context is obviously →-compatible. Furthermore, we have :

Proposition 3. The composition of linear contexts is linear. The projections
are linear contexts. Permuting the arguments of a context preserves its linearity.

Now, let us denote by en the sequence of n repetitions of the element e.

Definition 4 (Absorbing →-contexts). An n-ary →-context C is absorbing
if there exists an index i, 1 ≤ i ≤ n, such that ∀e0, e1 . . . , en ∈ E C(e1, . . . , en) =
C(e1, . . . , ei−1, e0, ei+1, . . . , en).

Definition 5 (Linear decomposition of →-contexts). A linear n-ary →-
context C is a linear decomposition of an unary →-context C′ if for any element
e ∈ E we have C′(e) = C(en). A family of linear →-contexts is linear if any
linear decomposition of its unary contexts is either unary or absorbing.

3.3 C-Safe Pairs

A family C of →-contexts induces a preordering relation over pairs of elements
in E as follows :

Definition 6. The preorder induced by a family C of contexts is the relation ≥C
on pairs satisfying: (e′1, e

′
2) ≥C (e1, e2) ⇔ ∃C ∈ C.(e′1 = C(e1) ∧ e′2 = C(e2)).

Proposition 4. (E,≥C) is a preorder.

Proof. The reflexivity of ≥C follows from the fact that the projection π1
1 is in

C. The transitivity of ≥C follows from the closure of contexts under arbitrary
compositions. �

In the following, we will denote by >C the strict preorder associated to ≥C . In
this preorder, the joinability of a pair entails the joinability of all its ≥C-greater
pairs :

Lemma 1. Let C be a family of →-contexts and (e1, e2) and (e′1, e
′
2) be two pairs

in E such that (e′1, e′2) ≥C (e1, e2). (i) If e1↓e2 then e′1↓e′2. Furthermore (ii), if C
is linear and e1↓εe2 then e′1↓εe′2.

Proof. Since (e′1, e
′
2) ≥C (e1, e2), let C ∈ C be a context such that e′1 = C(e1)

and e′2 = C(e2). Concerning (i), as e1↓e2, there exists an e such that e1 →∗ e
and e2 →∗ e. Hence by proposition 1 we have C(e1) →∗ C(e) and C(e2) →∗ C(e),
hence e′1↓e′2. (ii) is a direct consequence of the linearity of the contexts in C. �

One can also remark that a symmetrical pair is greater than any other pair
thanks to the projection operators in C. The joinability of symmetrical pairs is
thus subsumed by the joinability of non symmetrical pairs. We call C-Safe pairs
those pairs that are joinable by the →-compatibility of contexts. C-safe pairs can
thus be removed from the confluence analysis of��pairs.
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Definition 7 (C-Safe Pairs). A C-safe pair w.r.t. a context C ∈ C2 and two
transitions l1 → r1 and l2 → r2 is a pair of the form (C1(s1 . . . sm), C2(t1 . . . tn))
such that:

– for all 1≤ i≤m, si ∈ {l2, r2} and for all 1≤j≤m, tj ∈ {l1, r1}.
– C1 ∈ Cm and C2 ∈ Cn are linear decompositions of respectively λx.C(l1, x)

and λx.C(x, l2).

Lemma 2. All C-safe pairs are joinable.

Proof. In a C-safe pair as in the definition above, we trivially have ti →∗ r2
for all 1 ≤ i ≤ m, and sj →∗ r1 for all 1 ≤ j ≤ m. Hence, by proposition 1,
C1(t1, . . . , tm) →∗ C1(rm

2 ) and C2(s1, . . . , sn) →∗ C2(rn
1 ). Since C1 and C2 are the

respective linear decompositions of λx.C(l1, x) and λx.C(x, l2) for some context
C, we also have C1(rm

2 ) = C(l1, r2) and C2(rn
1 ) = C1(r1, l2). The pairs are thus

joinable by the →-compatibility of C. �

Now, by considering the linear decomposition of →-contexts, we get :

Lemma 3. Let C be a linear familly of contexts and C an unary context in C.
If Cn ∈ Cn is a linear decomposition of C then there existe 1 ≤ i ≤ n such that
for all e1, . . . , en ∈ E, Cn(e1, . . . , en) = C′(ei).

Proof. The proof is by induction on n. The base case, where n = 1, is trivial.
In the inductive case, where n > 1, since the familly C is linear, Cn is absorb-
ing. Hence there exist i, 1 ≤ j ≤ n, and e′ ∈ E such that for all e ∈ E Cn(en) =
Cn(e(j−1), e′, e(n−j−1)). The contextλx1, . . . , xn−1.Cn(x1, . . . xj−1, e

′, xj . . . xn−1)
is thus a linear decomposition of C′, and the induction hypothesis concludes the
proof.

Proposition 5. Let C be a linear family of →-contexts. Any C-safe pair w.r.t.
two transitions l1 → r1 and l2 → r2 is of the form (C(l1, r2), C(r1, l2)) for some
binary →-context C ∈ C2.

Proof. By lemma 3, any C-safe pair w.r.t. some context C′ and transitions
l1 → r1 and l2 → r2, is of the form (C′(l1, s), C′(t, l2)) with s ∈ {l2, r2} and
t ∈ {l1, r1}, i.e. of the form : (i) (C′(l1, l2), C′(l1, l2)), (ii) (C′(l1, l2), C′(r1, l2)),
(iii) (C′(l1, r2), C′(l1, l2)), or (iv) (C′(l1, r2), C′(r1, l2)). Hence the choice C =
λx1.x2.π

3
1(x1, x2, C

′(l1, l2)) for (i), C = λx1.x2.π
2
1(C′(x1, l2), x2) for (ii), C =

λx1.x2.π
2
2(x1, C

′(l1, x2)) for (iii) or C = λx1.x2.π
3
1(x1, x2, C

′(l1, l2)) for (iv) re-
spectively, ends te proof. �

Lemma 4. If C is a linear family of→-context, then all C-safe pairs are strongly
joinable.

Proof. By the previous proposition, we know that any C-safe pair is of the form
(C(l1, r2), C(r1, l2)) with l1 → r1 and l2 → r2. Hence, by the linearity of C we
have C(l1, r2) →ε C(r1, r2) and C(r1, l2) →ε C(r1, r2). �
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3.4 C-Critical Pairs

Let us recall that an ordered set (E,≥) is lower bounded if any element of E is
greater than or equal to some minimal element of E.

Definition 8 (C-critical pair). A C-critical pair is a ≥C-minimal element of
(��) that is not C-safe.

Theorem 1. Let C be a family of→-contexts (resp. family of linear →-contexts)
such that (��) is lower bounded w.r.t. ≥C. → is locally confluent (resp. strongly
confluent) if and only if all C-critical pairs are joinable (resp. strongly joinable).

Proof. For the if direction, let us suppose that all C-critical pairs are joinable.
We know that any pair in (��) is either a C-safe pair, or is comparable to a C-
critical pair. It is thus joinable in both cases, using respectively lemma 2 and
lemma 1. The “only if” is trivial since C-critical pairs are in (��).

The proof of strong confluence is similar using lemma 4. �

This theorem can be used to establish the local (resp. strong) confluence of
an arbitrary binary relation →, by finding a family C of (linear) →-context
operators for which ≥C is lower bounded on brother pairs and admits a finite set
of ≥C-minimal elements. In the following sections, we illustrate this approach
on several examples. We also show that some classical critical pairs are not C-
critical, and can thus be disregarded. Furthermore, one example in section 5.2
shows a concrete case where the preordering ≥C is not well-founded but only
lower bounded on brother pairs, as the theorem requires.

4 Applications to Term Rewriting Systems

4.1 Preliminaries

Let T be the set of terms (denoted by t, s, r,. . . ) built from a countable infinite
set V of variables (denoted by x, y, z, . . . ) and a countable set F of function
symbols (denoted by f, g, h, . . . ) given with their arity. We will use the classical
propositions and notations borrowed from [9] :

– V(t) ⊂ V for the set of variables of t,
– O(t) for the set of occurrences of t (denoted by u, v, . . . ),
– t/u for the subterm of t at u,
– t[u← s] for the subterm replacement at u,
– u.v for the concatenation of u and v,
– ≤ the prefix ordering on occurrences,
– u|v to note disjoint occurrences.

A substitution σ is mapping from V to T with xσ = x almost everywhere.
Substitution are extended as morphisms to T . If {x1, . . . xn} is the domain of σ
(i.e. the set {x ∈ V|σ(x) �= x}) we will also denote σ by [x1\x1σ, . . . , xn\xnσ].
A renaming is a substitution [x1\y1, . . . , xn\yn] where the yi’s are pairwise
distinct variables. A most general unifier (mgu) for two given terms t and s is
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a substitution σ satisfying (i) tσ=sσ and (ii) for all subsitution σ1 if tσ1 =sσ1

then there exists a subsitution σ2 such that σ1 = σ2 ◦ σ.
A rewriting rule is a pair 〈l → r〉 where l and r are two first order terms such

that l /∈ V and V(r) ⊂ V(l). A term rewriting system R is a set of rewriting
rules. The relation →R is the least relation satisfying s →R t if there exists a
position p, a rule 〈l → r〉 ∈ R and a substitution σ such that s/u = lσ and
t = s[u← rσ].

4.2 C-critical Pairs of Ordinary Term Rewriting Systems

Let R be a TRS over a set of terms T .

Definition 9. Let Ct be the family of operators over T containing all the opera-
tors of the form Cy1,...yn = λs, s1, . . . , sn . s[y1\s1, . . . , yn\sn] for {y1, . . . , yn} ⊂
V, and closed under composition, projection and argument permutation.

One can easily show :

Proposition 6. Ct is a family of →R-contexts.

Proposition 7. ≥Ct is well-founded.

Therefore all subsets of (E ×E), and in particular (��), are lower bounded. Now
a classical critical pair, between two rules 〈li → ri〉 and 〈lj → rj〉 is a pair of the
form (liσ[u← rjρσ], riσ) where :

1. ρ is a renaming and σ is a substitution such that V(li) ∩ V(ljρ) = ∅;
2. u is an occurrence of li such that li/u is not a variable;
3. σ is an mgu for li/u and ljρ.

Proposition 8. Le t be an arbitrary term and y a variable. (i) λs.Cy(s, t) is a
linear →R-context. (ii) λs1 . . . sn.Cy1,...,yn(t[u1 ← y1] . . . [un ← yn], s1, . . . , sn),
where the ui’s are the occurrences of y in t and yi’s are pairwise distinct variables
free in t, is a linear decompositions of λs.Cy(t, s).

Then by tedious case analysis, one can show :

Proposition 9. Let R be a rewriting system. A Ct-critical pair of →R is a
classical critical pair between two rules of R.

This proposition together with theorem 1 establishes that the local confluence
of arbitrary rewriting systems can be deduced from the joinability of its classical
critical pairs. However, some classical critical pairs may be not Ct-critical, and
can thus be disregarded.

Example 1. Let R be the following system:

R = {〈a→ f(c, b)〉, 〈a→ g(b)〉, 〈f(x, x) → g(x)〉, 〈b→ c〉}

(f(c, b), g(b)) is a classical critical pair for →R. However this critical pair is
a Ct-safe pair w.r.t. the transitions f(x, x) → g(x) and b → c. Indeed C1 =
λs1, s2.f(s1, s2) is a linear decomposition of λs.Cx(g(x), s), C2 = λs.Cx(s, b) is
linear, f(c, b) = C1(c, b) and g(b) = C2(g(x)) with c→ b and f(x, x) → g(x).
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4.3 Strong Confluence of Linear Term Rewriting Systems

A term t is linear if any variable appears at most once in t. A system R is linear
iff for all rules 〈l → r〉 ∈ R, l and r are linear. Let →l

R be the restriction of →R
to linear terms.

Definition 10. Let Cl be the family of contexts, closed by composition, argument
permutation, projection and containing the operators

Cρ
y1,...,yn

= λs0, . . . , sn.(φ0(s0)[y1\φ1(s1), . . . , yn\φn(sn)])ρ

where y1, . . . , yn are pairwise distinct variables, ρ is a renaming, ∪i∈N{Vi} is a
partition of V where the Vi’s are infinite, and for any i ∈ N, φi is a one-to-one
mapping between V and Vi.

Let Cs be the family of operators containing all substitution operators, closed
by projection, argument permutation and composition.

Proposition 10. For any relation a linear TRS R we have :

(i) Cl and Cs are linear families of respectively →l
R-contexts and →R-contexts;

(ii) the brother pairs w.r.t. →l
R are lower bounded w.r.t. ≥Cl

;
(iii) Cl-critical pairs of →l

R are classical critical pairs;
(iv) Any →R-brother pair is greater than or equal to a →l

R-brother pair.

The propositions (i), (ii) and (iii) can be used with theorem 1 to analyze the
strong confluence of →l

R. The strong confluence analysis of any linear rewriting
system follows from (i), (iv) and lemma 1.

4.4 Conditional Term Rewriting Systems

A Conditional Term Rewriting Systems (CTRS) is a TRS in which the applica-
tion of rules is controlled by some condition. In this section we focus on particular
CRTS known as join systems [16].

A conditional term rewriting rule has the form (l → r ⇐ t↓t′) where 〈l → r〉
is a classical rewriting rule and t and t′ are terms. A conditional term rewriting
system(CTRS) is a set of conditional term rewriting rules. For a given CTRS
RC , the relation →RC is defined inductively by the following rule :

u ∈ O(s) (l→ r ⇐ t↓t′) ∈ RC tσ↓RC t
′σ

s[u← lσ]→RC s[u← rσ]

Definition 11. A primary critical pair between two conditional rules (li → ri ⇐
ti↓t′i) and (〈lj → rj ⇐ tj ↓t′j) is a conditioned pair of the form ((tiσ, t′jρσ)↓
(t′iσ, t

′
jρσ) : (liσ[u← rjρσ], riσ)) where:

– ρ is a renaming and σ is a substitution such that V(li) ∩ V(ljρ) = ∅;
– u is an occurrence of li such that li/u is not a variable;
– σ is an mgu for li/u and ljρ;
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A conditioned pair (t↓t′ : (s, s′)) is joinable if sσ↓s′σ for any substitution σ such
that tσ↓t′σ.

This definition of critical pair was proposed in [7]. Nonetheless the authors of this
paper underlined that there exist noetherian non locally confluent systems for
which all those critical pairs are joinable. The following example illustrates why
the previous definition is not consistent with our definition of abstract critical
pairs. We then introduce the definition of secondary critical pairs.

Example 2. Let RC = {(f(x) → g(x) ⇐ x↓a), (a → b ⇐ a↓a)}. The family of
contexts Ct, defined in section 4.2 for ordinary TRS, is a family of contexts for
any →RC . Nonetheless, since f(x) �→RC g(x), the pair (f(b), g(a)) is not Ct-safe.
Furthermore, as it is minimal in (��), it is Ct-critical and should be considered.

Definition 12. A secondary critical pair between two conditional rules (li →
ri ⇐ ti ↓t′i) and (〈lj → rj ⇐ tj ↓t′j) is a pair of the form ((ti, tjρ)↓(t′i, t′jρ) :
(li[x\u[p← rjρ]], ri[x\u[p← ljρ]]) where:

– ρ is a renaming such that and V(li) ∩ V(ljρ) = ∅;
– u is an arbitrary term and p ∈ O(u);
– x ∈ V(li) ∩ V(ti↓t′i).

According to the definition of joinability of conditioned pairs, a conditioned pair
(t↓t′ : (s, s′)) defines the set of pairs {(sσ, s′σ) | tσ↓t′σ)}. Let us call an instance
of (t↓t′ : (s, s′)), any element of this set. With a proof analogous to proposition
9, we obtain :

Proposition 11. Let RC be a rewriting system. A Ct-critical pair of →RC is an
instance of a primary or secondary critical pair between two rules of RC.

This shows the soundness of deriving the local confluence of CTRS from the
joinability of both primary and secondary critical pairs. For this, an effective
definition of secondary critical pairs is thus worth investigating.

5 Applications to Production Rules with Constraints

Production rules are condition-action rules that transform a base of facts by
adding or removing facts at each rule firing. The Constraint Handling Rules
(CHR) language [8] generalizes production rules by lifting the base of ground
facts to a store of constraints over uninstantiated variables, and interpreted in
an arbitrary mathematical structure.

In this section, we focus on the confluence analysis of CHR rules, and show
how the abstract notion of C-critical pairs can be instantiated to analyze the
confluence of CHR rules as proposed in [1]. This is shown under both the naive
semantics of CHR without control strategy, and under the refined semantics
of CHR that integrates partial control strategies based on the history on rule
firings, captured here by context operators. Furthermore, the necessity to deal
with constrained states illustrates the difficulty to define well-founded orderings,
and our use of bounded orderings instead.
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5.1 Preliminaries

In CHR, a language of built-in constraints interpreted over some structure X
and assumed to contain the equality =, is distinguished from the language of
user-defined CHR constraints formed over a different set of predicate symbols.
A CHR program is a finite sequence of CHR rules, where a CHR rule is either:

– a simplification rule of the form:
H1, . . . , Hi <=> G1, . . . , Gj | B1, . . . , Bk

– or a propagation rule of the form:
H1, . . . , Hi ==> G1, . . . , Gj | B1, . . . , Bk

where i > 0, j ≥ 0, k ≥ 0, l > 0, H1, . . . , Hi are CHR constraints, the guards
G1, . . . , Gj are built-in constraints, and the body B1, . . . , Bk is composed of CHR
and built-in constraints (with k > 0 in propagation rules).

The symbol * is used to represent empty sequences. The empty guard can
be omitted together with the symbol |. The notation name@R gives a name to
a CHR rule R. For the sake of simplicity, we assume without loss of generality
that a variable appears at most once in the head of a rule.

Example 3. The following CHR rules [8] define an ordering constraint solver

reflexivity @ X=<Y <=> X=Y | true.
antisymmetry @ X=<Y , Y=<X <=> X=Y.
transitivity @ W=<X , Y=<Z ==> X=Y | W=<Z.

The first rule eliminates the =< constraints with equal arguments, the second
replaces a double inequality by an equality, and the third adds the transitive
closure constraints.

5.2 CHR Under Its Naive Semantics

The naive operational semantics of CHR does not include any control strategy.
As a result, propagation rules can loop forever. This is corrected in the refined
semantics presented in the next section by imposing that a rule is fired once on
the same instances. We first present the confluence analysis of CHR programs
under the naive semantics.

Here, a CHR state is a tuple ∃x̄.〈F,E,D〉 where, x̄ is a set of variables called
anonymous variables, F is a multiset of built-in and CHR constraints called
goal, E is a CHR constraint store, and D is a built-in constraint store. A state is
thus a conjunction of CHR and built-in constraints1. In the following, we work
implicitly modulo the following equivalence ≡ over states :

1 ∃x̄y.〈F,E,D〉 ≡ ∃x̄z(〈F,E,D〉[y\z]) with zy �∈ x̄.
2 ∃x̄ȳ.〈F,E,D〉 ≡ ∃x̄ȳ′.〈F,E,D′〉 if X |= ∃ȳ.D ⇔ ∃ȳ′.D′ if (ȳ∪ȳ′)∩V(F,E) = ∅
1 Usually a CHR goal is annotated with the free variables of the query (i.e. initial
goal). Here, the anonymous variables represent the variables introduced during the
computation that leads to the given state.
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The condition at the end of the second rule ensures that the variables ȳ and ȳ′

are strictly local variables, i.e. anonymous variables appearing only in the built-
in store. Given a CHR program P , the transition relation → over states of the
naive operational semantics, is defined inductively as the least relation satisfying
the following rules :

Solve ∃x̄.〈C ∧ F,E,D〉 → ∃x̄.〈F,E,C ∧D〉 if C is a built-in constraint
Introduce ∃x̄.〈H ∧ F,E,D〉 → ∃x̄.〈F,H ∧ E,D〉 if H is a CHR constraint.
Simplify ∃x̄.〈F,H ′ ∧E,D〉 → ∃x̄ȳ.〈B ∧ F,E,H = H ′ ∧D〉

if (H <=> G | B) is in P renamed with fresh variables ȳ,
and X |= D → ∃ȳ(H = H ′ ∧G).

Propagate ∃x̄.〈F,H ′ ∧ E,D〉 → ∃x̄ȳ.〈B ∧ F,H ′ ∧E,H = H ′ ∧D〉
if (H ==> G | B) is in P renamed with fresh variables ȳ,
and X |= D → ∃ȳ(H = H ′ ∧G).

where the variables appearing in triples stand for conjunctions of constraints,
and x̄ represents the set of variables appearing in the head H .

Example 4. One possible execution of the previous program is :

〈Z=<X, X=<Y∧ Y=<Z, true〉 (Introduce ×2)
〈X=<Z ∧ Z=<X, X=<Y ∧ Y=<Z, true〉 (Propagate transitivity)
〈true, X=<Z∧ Z=<X ∧ X=<Y ∧ Y=<Z, true〉 (Introduce ×2)
〈X=Z, X=<Y ∧ Y=<Z, true〉 (Simplify antisymmetry)
〈true, X=<Y∧ Y=<Z, X=Z〉 (Solve)
〈X=Y, true, X=Z〉 (Simplify antisymmetry)
〈true, true, X=Y ∧ X=Z〉 (Solve)

Definition 13 (Quantified conjunction). The quantified conjunction of two
states is a binary operator +ȳ, parameterized by a set ȳ of variables, defined by:

∃x̄.〈F,E,D〉 +ȳ ∃x̄′.〈F ′, E′, D′〉 = ∃ȳx̄x̄′.〈F ∧ F ′, E ∧ E′, D ∧D′〉

where ȳ, x̄, x̄′ are supposed disjoint without loss of generality. Let Ch be the
family of quantified conjunction operators.

Proposition 12. Quantified conjunctions are →-linear.

Unlike the orders defined in the previous section for first-order terms, the pre-
order ≥Ch

may be not well-founded. This is the case when logical implication
in X is not well-founded. For example if X is the constraint system (N,≤), the
chain p1 >Ch

p2 >Ch
p3 . . . (where pi = (〈∅, ∅, 1 ≤ x ∧ x ≤ i〉, 〈∅, ∅, x ≤ i〉)) is

strictly decreasing w.r.t. >Ch
.

However one can prove that the brother pairs (��) admit ≥Ch
-minimal ele-

ments. For this purpose, we assume without loss of generality that no rule in P
is subsumed by another one in P , since P is finit. Here we will say that a simpli-
fication rule (resp. a propagation rule) R subsumes another rule (H <=>G1|B)
(resp. (H ′, H ==>G1|B)) if there exists a renaming of R of the form (H <=>G2|B)
(resp. (H ==>G2|B)) such that the constraint G2 subsumes G1 in X .
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Proposition 13. (��) is lower bounded with respect to ≥Ch
.

Proof. Let min be the mapping of valid reductions to pairs of states defined as
follows :

1. min(∃x̄.〈C ∧ F,E,D〉 → ∃x̄.〈F,E,C ∧D〉) = (〈C, ∅,*〉, 〈∅, ∅, C〉);
2. min(∃x̄.〈H ∧ F,E,D〉 → ∃x̄.〈F,H ∧ E,D〉) = (〈H, ∅,*〉, 〈∅, H,*〉);
3. min(∃x̄.〈F,H ′ ∧E,D〉 → ∃x̄ȳ.〈B ∧ F,E,D〉) = (〈∅, H ′, G〉, 〈B, ∅, G〉)

if (H <=> G | B) is in P renamed with fresh variables ȳ;
4. min(∃x̄.〈F,H ′ ∧E,D〉 → ∃x̄ȳ.〈B ∧ F,H ′ ∧E,D〉) = (〈∅, H ′, G〉, 〈B,H ′, G〉)

if (H ==> G | B) is in P renamed with fresh variables ȳ

By cases on the type of the reduction, one can check that min is a total function,
i.e. any reduction is mapped to a pair. Moreover, for any reduction S → S′,
min(S → S′) = (T, T ′) defines a reduction T → T ′ that is smaller than or equal
to any other comparable reduction.

Now we prove that any pair (S1, S2) in (��) is comparable to a minimal pair.
Let S be a state such that S → S1 and S → S2. Let (T1, T

′
1) = min(S → S1) and

(T2, T
′
2) = min(S → S2). We suppose that T ′

1 �= T ′
2, otherwise (S1, S2) would be

symmetrical.The proof is by case on T1 and T2 :

– T1 (or T2) is of the form 〈H, ∅,*〉 : since T ′
1 �= T ′

2, H is not in the goal of
T2 (or T1). Hence we deduce that (S1, S2) ≥Ch

(T ′
1 +∅ T2, T1 +∅ T

′
2) that is

clearly minimal in (��).
– T1 (or T2) is of the form 〈C, ∅,*〉 : as in the previous case we infer that

(S1, S2) ≥Ch
(T ′

1 +∅ T2, T1 +∅ T
′
2) that is minimal in (��).

– T1 = 〈∅, H1, C1〉 and T2 = 〈∅, H2, C2〉 : let T ′
1 = 〈B1, H

′
1, C1〉 and T ′

2 =
〈B2, H

′
2, C2〉. Let {H11, H12} and {H21, H22} two partitions of H1 and H2

such that H11 = H22 and H12 ∩ H21 = ∅. Then we have (S1, S2) ≥Ch

(〈B1, H
′
1∧H21, G1∧G2∧H11 = H22〉, 〈B2, H

′
2∧H12, G1∧G2∧H11 = H12〉).

The latter pair is minimal in (��), as otherwise H11, H12 and H21, H22 would
not be the biggest partitions of H1 and H2. �

Let ζ(R) be the constraints in the head of R that are not deleted by its
application, i.e. ζ(R) = true if R is a simplification or ζ(R) = H if R is a
propagation rule with head H . Let R be a rule with guard G, body B and head
H1, . . . , Hn and let R′ be a rule renamed with fresh variables with guard G′,
body B′ and head H ′

1, . . . , H
′
m. A CHR critical pair between R and R′ is a pair

of the form :

(∃ȳ.〈ζ(R), H ′
jk+1

, . . . , Him , B, true, Ḡ〉, ∃ȳ.〈ζ(R′), Hik+1 , . . .Hin , B
′, true, Ḡ〉)

where Ḡ = G ∧ G′ ∧ Hi1 = H ′
j1 ∧ · · · ∧ Hik

= H ′
jk

, while {i1, . . . , in} and
{j1, . . . , jm} are permutation of {1, , . . . , n} and {1, . . . ,m} respectively, and ȳ
is the set of variables appearing in the bodies but not in the heads.

Proposition 14. Any Ch-critical pair is a CHR critical pair.
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This shows the soundness of analyzing the confluence of CHR programs by com-
puting CHR critical pairs [8]. However a CHR critical pair is not necessarily a
Ch critical pair, as shows the following :

Example 5. Let P be the CHR programe consisting into the two following rules
p,q,r <=> case(1) and p,q,s <=> case(2). P admits three critical pairs :
p1 = (〈case(1), s, true〉, 〈case(2), r, true〉)
p2 = (〈case(1), q ∧ s, true〉, 〈case(2), q ∧ r, true〉)
p3 = (〈case(1), p ∧ s, true〉, 〈case(2), p ∧ s, true〉)

However, p2 and p3 are not Ch-critical as p2 >Ch
p1 and p3 >Ch

p1.

5.3 CHR Under Its Refined Semantics

The refined operational semantics of CHR includes a partial control strategy
that prevents the looping of propagation rules by restricting their firing only
once on the same instances. By internalizing the necessary information in the
states, one can nevertheless prove local confluence by computing critical pairs
between states enriched with control tokens.

A refined CHR state ∃x̄.〈〈F,E,D, T 〉〉 is composed of a naive state ∃x̄.〈F,E,D〉
together with a set T , the token store, composed of tokens of the form R@C
where C is a conjunction of constraints and R a rule name. T contains the
necessary information about propagation rules, the respective constraints that
can be possibly applied are contained in T . Given a CHR program P and a
CHR constraint C, the tokenset of an user-defined constraint C with respect to
conjunction of constraints CU is the set :

T (C,Cu) =
{
R@H ′ R@(H ==> G | B) ∈ P,C is in H ′,

H ′ is a subset of C ∧ Cu, H unifies with H ′

}

and T (C1 ∧ · · · ∧ Cn, Cu) = T (C1, Cu) ∪ · · · ∪ T (Cn, Cu). The refined transition
relation →+ is given by the following rules, where the variables appearing in
triples stand for conjunctions of constraints and x̄ represents the set of variables
appearing in the head H .

Solve
∃x̄.〈〈C ∧ F,E,D, T 〉〉 →+ ∃x̄.〈〈F,E,C ∧D, T 〉〉 if C is a built-in constraint

Introduce
∃x̄.〈〈H ∧ F,E,D, T 〉〉 →+ ∃x̄.〈〈F,H ∧ E,D, T ∪ T (H,E)〉〉
if H is a CHR constraint.

Simplify
∃x̄.〈〈F,H ′ ∧ E,D, T 〉〉 →+ ∃x̄ȳ.〈〈B ∧ F,E,D, T ∩ T (H ∧E,*)〉〉
if (H <=> G | B) is in P renamed with fresh variables ȳ,
and X |= D → ∃x̄(H = H ′ ∧G).

Propagate
∃x̄.〈〈F,H ′ ∧ E,D, {R@H ′} ∪ T 〉〉 →+ ∃x̄ȳ.〈〈B ∧ F,H ′ ∧ E,D, T 〉〉
if R@(H ==> G | B) is in P renamed with fresh variables ȳ,
and X |= D → ∃x̄(H = H ′ ∧G).
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Definition 14 (Refined state conjunction). The refined quantified conjunc-
tion of two states is a binary operator +ȳ, parameterized by a set ȳ of variables
and defined as:

∃x̄.〈〈F,E,D, T 〉〉+ȳ∃x̄′.〈〈F ′, E′, D′, T ′〉〉=∃ȳx̄x̄′.〈〈F ∧F ′, E∧E′, D ∧D′, T ∪ T ′〉〉

where ȳ, x̄, x̄′ are supposed disjoint without loss of generality. Let C+
h be the

family of refined state conjunction operators.

Definition 15. Let R be a rule with guard G, body B and head H1, . . . , Hn and
let R′ be a rule renamed with fresh variables with guard G′, body B′ and head
H ′

1, . . . , H
′
m. A refined critical pair between R and R′ is a pair of the form :

(∃ȳ.〈〈ζ(R), H ′
jk+1

. . . , HimB, true, Ḡ, ∅〉〉, ∃ȳ.〈〈ζ(R′), Hik+1 . . . Hin , B
′, true, Ḡ, ∅〉〉)

where Ḡ = G ∧ G′ ∧ Hi1 = H ′
j1 ∧ · · · ∧ Hik

= H ′
jk

, while {i1, . . . , in} and
{j1, . . . , jm} are permutation of {1, , . . . , n} and {1, . . . ,m} respectively and ȳ is
the set of variables appearing in bodies but not in the heads.

With a proof similar to the previous proposition, we get :

Proposition 15. Any C+
h -critical pair is a CHR refined critical pair.

6 Conclusion

By abstracting the notion of critical pairs from term rewriting systems to ar-
bitrary binary relations and arbitrary context operators over some set E, an
abstract critical pair theorem has been proved, and shown useful to establish
the local confluence of a wide variety of transition systems. This has been illus-
trated by instantiating the abstract notion of contexts and critical pairs to prove
the soundness of classical critical pair definitions in term rewriting systems, con-
ditional term rewriting systems, and Constraint Handling Rules programs. In
the latter case, our use of bounded orderings instead of well-founded orderings
has been shown necessary to handle the constrained states of CHR transitions.
Interestingly in all these cases, we have shown that some classical critical pairs
could be disregarded.

An abstract notion of linear contexts and linear decomposition has been
proved useful to establish these results. This could be further developed to define
an abstract notion of orthogonal systems [16]. As for future work, the general-
ization of our approach to n-ary relations might also be worth investigating in
connection to the theory of canonical inference [3,6], with well-founded ordering
assumptions replaced by boundedness conditions.

Acknowledgments. We are grateful to the anonymous referees for their com-
ments and for pointing us to [3]. This work benefited from partial support by
the ANR RNTL Manifico project.
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8. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming 37(1-3), 95–138
(1998)

9. Huet, G.: Confluent reductions: Abstract properties and applications to term
rewriting systems: Abstract properties and applications to term rewriting systems.
Journal of the ACM 27(4), 797–821 (1980)

10. Jouannaud, J.-P., Kirchner, H.: Completion of a set of rules modulo a set of equa-
tions. SIAM Journal of Computing 15(4), 1155–1194 (1986)

11. Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems.
In: Proceedings of the 11th International Conference on Concurrency Theory, pp.
243–258 (2000)

12. Meseguer, J.: Rewriting logic as a semantic framework for concurrency: a progress
report. In: Proceedings of the 7th International Conference on Concurrency Theory,
pp. 331–372 (1996)

13. Noll, T.: On coherence properties in term rewriting models of concurrency. In:
Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 478–493.
Springer, Heidelberg (1999)

14. Peterson, G., Stickel, M.: Complete sets of reductions for some equational theories.
Journal of the ACM 28(2), 233–264 (1981)

15. Raoult, J., Voisin, F.: Set-theoretic graph rewriting. In: Proceedings of the Inter-
national Workshop on Graph Transformations in Computer Science, pp. 312-325
(1993)

16. Terese.: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-
ence. Cambridge University Press, Cambridge (2003)
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Abstract. We propose three different notions of completeness for order-
sorted equational specifications supporting context-sensitive rewriting
modulo axioms relative to a replacement map μ. Our three notions are:
(1) a definition of μ-canonical completeness under which μ-canonical
forms coincide with canonical forms; (2) a definition of semantic com-
pleteness that guarantees that the μ-operational semantics and standard
initial algebra semantics are isomorphic; and (3) an appropriate defin-
ition of μ-sufficient completeness with respect to a set of constructor
symbols. Based on these notions, we use equational tree automata tech-
niques to obtain decision procedures for checking these three kinds of
completeness for equational specifications satisfying appropriate require-
ments such as weak normalization, ground confluence and
sort-decreasingness, and left-linearity. The decision procedures are im-
plemented as an extension of the Maude sufficient completeness checker.

1 Introduction

In equational programming there is a relentless drive to increase the expressive-
ness and generality of programs. This provides a much easier and elegant way of
mapping many applications into such languages. For example, the use of sorts,
subsorts, and matching modulo axioms like associativity and/or commutativity,
makes equational programming much easier and allows very elegant and succinct
programming solutions.

Another important dimension, along which program expressiveness can be
substantially increased is that of user-programmable evaluation strategies based
on context-sensitive (CS) rewriting (see, for example (14; 16; 22)). They allow
very fine-grained control (at the level of each individual function symbol) on how
the rewriting evaluation is performed. Their value and practical importance has
been recognized in many equational languages. OBJ2 (6) was the first such lan-
guage supporting them; and they are, for example, supported in all languages in
the OBJ family, including CafeOBJ (5) and Maude (2). In practice, CS rewriting
can be used for two somewhat different purposes:

1. to increase the efficiency of a standard equational program without chang-
ing its meaning: for example by restricting the evaluation of an if-then-else
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symbol to its first, boolean argument to avoid wasteful or even nonterminat-
ing computations; and

2. as a way to compute with infinite data structures such as, for example, the
infinite stream of all prime numbers, in a lazy way; in this second case, CS
rewriting provides an elegant, finitary way of computing with infinite objects.

Expressiveness is substantially increased in both of these ways, since the user
can both control the efficiency of program execution and map into the language
new applications involving infinite data structures.

This is all very well. However, there are a number of open research questions
about how to reason formally about equational programs supporting CS rewrit-
ing for verification purposes. Two areas where important progress has been made
are in methods for proving termination, e.g., (7; 18; 22) and confluence (14) of
CS equational programs. But other important questions remain unexplored.

Imagine, for example, that you want to use an inductive theorem prover to
verify some property about a CS equational program. No inductive theorem
prover that we are aware of allows reasoning about CS programs. Is it ok to ignore
the CS information and just reason about the underlying equational theory? We
think that, in general, the answer is: definitely not! Why not? Because inductive
reasoning principles may not be sound on the model of the CS program.

What models are we talking about? Well, that is, indeed, one of the inter-
esting research questions. For an equational theory (Σ,E), the model on which
inductive reasoning is sound is obvious, namely, the initial algebra TΣ/E. In
fact, initial algebra semantics is the standard mathematical semantics of equa-
tional programs in languages such as OBJ, CafeOBJ, and Maude. Furthermore,
provided that the equational program is weakly normalizing and ground conflu-
ent, the initial algebra semantics fully agrees with the operational semantics, in
the precise, mathematical sense that the initial algebra TΣ/E and the canonical
term algebra CanΣ/E obtained by rewriting are isomorphic. For CS rewriting
the matter is less obvious, since we only have an operational semantics provided
by the CS rewriting relation, but as far as we know no mathematical models
in the form of algebras have been put forward. Therefore, the first thing we do
in this work is to put forward such an algebra, namely, the algebra Canμ

Σ/E of
μ-canonical forms, for μ the replacement map of the given CS program. We do so
not just for vanilla-flavored, untyped CS programs, but for the more general and
expressive CS programs with other features such as order-sorting and rewriting
module axioms that one encounters in actual languages.

The importance of the algebra Canμ
Σ/E is that it enables articulating and

providing proof methods for three important CS completeness problems, namely:

1. μ-canonical completeness, which means satisfying the set-theoretic equality
Canμ

Σ/E,s = CanΣ/E,s for each sort s in the specification;
2. μ-semantic completeness, which model-theoretically corresponds to the case

where the surjective Σ-homomorphism q : Canμ
Σ/E → TΣ/E, which we

show always exists under minimal assumptions, is an isomorphism, and
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proof-theoretically means that the sound way of proving ground E-equalities
by CS rewriting is also complete;

3. μ-sufficient completeness, which generalizes the usual sufficient completeness
of equational function definitions with respect to a signature of constructors
to the CS case . The subtlety here is that in general it would be too strong
to require that constructors appear in all positions of a term t in μ-canonical
form: we only make such a requirement for replacing positions in t.

Our goal is not only to articulate these notions, but also to provide proof
methods for them in the form of decision procedures under mild assumptions
about the given CS program. Given that the CS programs we consider perform
rewriting modulo axioms and are order-sorted, our methods are based on Propo-
sitional Tree Automata (12), a kind of equational tree automata (20), that can
take into account both sort information and reasoning modulo axioms. These
decision procedures have been implemented in an extension of Maude’s Suffi-
cient Completeness Checker (SCC) (11), and we use several Maude programs to
illustrate both the basic ideas and the use of SCC in verifying CS completeness
properties.

The paper is organized as follows. In Section 2, we review basic concepts from
order-sorted algebra, and introduce the precise class of CS term-rewrite systems
we are considering. In Section 3, we define the canonical term algebra for a CS

specification. In Section 4, we define the three notions of CS completeness, and
in Section 5 we show how one can use PTA to check these completeness notions
under appropriate assumptions. Finally, we discuss related work and suggest
future avenues of research in Section 6. Full proofs can be found in (10).

2 Preliminaries

2.1 Order-Sorted Algebra

Order-sorted algebras are an extension of many-sorted algebras where a partial
order ≤ is associated to the sorts in order to build a notion of subtype and
supertype into the algebra and operators can be overloaded and then must agree
on common data.

Definition 1. An order-sorted signature is a tuple Σ = (S, F,≤) where

– (S,≤) is a poset; and
– F = {Fw,s}(w,s)∈S∗×S is a family of operator symbols such that if f ∈ Fw,s∩
Fw′,s′ then w ≡≤ w′ and s ≡≤ s′, where ≡≤ denotes the equivalence relation
generated by ≤ extended to sequences in the usual way.

We assume the existence of an S-sorted family of variablesX = {Xs}s∈S distinct
from the operators F , where each set Xs is countably infinite and pairwise
disjoint. We write xs if x is a variable in Xs. When the signature Σ = (S, F,≤)
is clear, we sometimes write f : s1 . . . sn → s for f ∈ Fs1...sn,s. Given a signature
Σ, TΣ(X)s denotes the terms with sort s formed by the operators in Σ and
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variables in X , and TΣ,s denotes the ground terms with sort s. A substitution
θ : X → TΣ(X) is a mapping such that θ(xs) ∈ TΣ(X)s for each xs ∈ Xs,

Definition 2. An order-sorted theory is a pair E = (Σ,E) where Σ = (S, F,≤)
is an order-sorted signature, and E is a set of equations of the form l= r with
l, r ∈ TΣ(X) terms having sorts in the same equivalence class in S/ ≡≤.

There are various inference systems in order-sorted logic for deriving equations
of the form t= u. We use the sound and complete inference system presented
in (19). We also use the definition for order-sorted algebras and homomorphisms
found in (19). See (9; 19) for surveys on order-sorted algebra.

Definition 3. A Σ-algebra A for a signature Σ = (S, F,≤) consists of:

– a set As for each sort s ∈ S such that As ⊆ As′ for s ≤ s′;
– a function Af :w→s : Aw → As for each symbol f ∈ Fw,s where w = s1 . . . sn,
Aw = As1× . . . Asn , and Af :w→s(ā) = Af :w′→s′(ā) for each f ∈ Fw,s∩Fw′,s′

and ā ∈ Aw ∩Aw′ .

A Σ-homomorphism h : A→ B is a family of functions {hs : As→Bs}s∈S such
that: if s≡≤ s

′ and a ∈ As ∩As′ , then hs(a) = hs′(a); and for f ∈Fs1...sn,s and
a1 ∈As1 , . . . , an ∈Asn , we have hs(Af (a1, . . . , an)) = Bf (hs1(a1), . . . , hsn(an)).

Given an order-sorted theory E = (Σ,E), an E-algebra is a Σ-algebra satis-
fying the equations in E. We let TΣ denote the term algebra for Σ, and TΣ/E

denote the E-algebra such that TΣ/E,s = {[t]E | t ∈ TΣ,s} for each sort s ∈ S,
where [t]E denotes the equivalence class of t under =E . Both TΣ and TΣ/E are
initial for the categories of Σ-algebras and E-algebras respectively, so there is
a unique homomorphism from TΣ to any Σ-algebra, and a unique homomor-
phism from TΣ/E to any E-algebra. For a Σ-algebra A and term t ∈ TΣ , we
let A(t) denote the value of t in the unique homomorphism A : TΣ → A, i.e.,
A(f(t1, . . . , tn)) = Af (A(t1), . . . , A(tn)).

2.2 Context-Sensitive Order-Sorted Term Rewrite Systems

In order to execute an equational theory, one typically treats the equations
l= r ∈ E as rewrite rules l→ r and simplifies expressions from left to right.
The most advanced rewrite engines today have matching algorithms capable of
matching modulo specific equational axioms such as associativity and commuta-
tivity, and with such systems we treat those specific axioms as equations while
treating the other axioms as rules. When rewriting modulo axioms, the variables
in the axioms are typically constrained at the level of the connected component
rather than of individual sorts. We include this restriction in the definition below:

Definition 4. An Order-sorted Term Rewrite System (TRS) is a tuple R =
(Σ,A,R) where:

– Σ = (S, F,≤) is an order-sorted signature where each connected component
[s] ∈ S/ ≡≤ contains a maximal sort denoted by ks;
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– A is a set of unconditional Σ-equations where the variables in each equation
are only constrained with the maximal sorts; and

– R is a set of rewrite rules of the form l→ r with l, r∈TΣ(X)s for some
s ∈ S, and vars(r) ⊆ vars(l);

Given a TRS R = (Σ,A,R), lhs(R) denotes the left-hand sides of the rules in R,
i.e., lhs(R) = {l | l→ r ∈ R}. We say that an order-sorted TRS R = (Σ,A,R) is
left-linear if each l ∈ lhs(R) is linear. Due to the restrictions on the signatures
and equations in our term rewrite system we are able to treat our order-sorted
axioms as many-sorted axioms for the purposes of matching modulo.

Definition 5. Given an order-sorted TRS R = (Σ,A,R) with Σ = (S, F,≤), we
let Σk = (SK , FK) denote the many-sorted signature where SK contains exactly
the maximal sorts ks ∈ S, and FK contains an operator f : ks1 . . . ksn → ks for
each f ∈ Fs1...sn,s.

Due to our restrictions on the equations in our term-rewrite theories, we can
essentially use =A to denote =(Σ,A) and =(ΣK,A) interchangeably on ground
terms, as justified by the following lemma which can be easily proved:

Lemma 1. Given a order-sorted TRS R = (Σ,A,R), for all terms t, u ∈ TΣ,
we have t=(Σ,A) u iff t=(Σk,A) u.

We are interested in studying and analyzing CS rewriting for order-sorted term
rewrite systems. In CS rewriting, there is a function μ : F → P(N), called the
replacement map, which maps each function symbol f ∈ F to a set of replacing
positions μ(f) ⊆ {1, . . . , arity(f)}. The replacement map μ is used for restricting
rewriting so that in rewriting a term f(t1, . . . , tn) ∈ TΣ(X), the term ti can only
be rewritten if i ∈ μ(f). A CS term rewrite system is a pair (R, μ) where μ is a
replacement map for the signature used in R.

Given a replacement map μ, the set of positions that may be rewritten are
called the μ-replacing positions and denoted by posμ(t). Formally, we have:

posμ(x) = {ε} and posμ(f(t1, . . . , tn)) = {ε} ∪
⋃

i∈μ(f)

{iw | w ∈ posμ(ti)}.

A context C is μ-replacing when the hole appears in a μ-replacing position.
We write t→R,μ u if t rewrites to u using the rules in R and replacement map

μ in a single rewrite step, i.e., there is a rule l→ r in R such that t=AC[lθ] and
u=AC[rθ] for some μ-replacing context C and substitution θ : X → TΣ(X).
The reflexive and transitive of closure of →R,μ is →∗

R,μ . We write t ↓μ
R u if t

and u can be rewritten to the same term, i.e., there is a term v ∈ TΣ(X) such
that t→∗

R,μ v and u→∗
R,μ v.

A term t ∈ TΣ(X) is (R, μ)-reducible iff there is a u ∈ TΣ(X) such that
t→R,μ u, and (R, μ)-irreducible otherwise. We also say that a μ-irreducible term
t ∈ TΣ(X) is in μ-canonical form. We write t→!

R,μ u if t→∗
R,μ u and u is (R, μ)-

irreducible. R is μ-weakly normalizing when for each term t ∈ TΣ(X) there
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is a term u ∈ TΣ(X) such that t→!
R,μ u. R is μ-terminating if the relation

→R,μ is Noetherian. R is μ-confluent if for all t, u, v ∈ TΣ(X), t→∗
R,μ u and

t→∗
R,μ v implies u ↓μ

R v. R is μ-sort-decreasing if for all terms t ∈ TΣ(X)s and
u ∈ TΣ(X)ks , t→∗

R,μ u implies that there is a term v ∈ TΣ(X)s such that
u→∗

R,μ v. When R is μ-weakly normalizing, μ-confluent, or μ-sort-decreasing on
ground terms, we say that it is ground μ-weakly normalizing, ground μ-confluent,
or ground μ-sort-decreasing, respectively.

When the replacement map μ allows rewriting at every subterm position, this
inference system specializes to rewriting in the ordinary sense. Let μ� be the re-
placement map f �→ {1, . . . , arity(f)}. We write t→R u iff t→R,μ�

u, and t→∗
R u

iff t→∗
R,μ�

u. Additionally, we will say that a system R is weakly normalizing
iff it is μ�-weakly normalizing. More generally, we extend this convention to all
other properties. For example, we say that R is confluent iff it is μ�-confluent.

3 Context-Sensitive Canonical Term Algebras

When R = (Σ,A,R) is ground μ-weakly normalizing and ground μ-confluent,
for each term t ∈ TΣ, there is a (R, μ)-irreducible term, denoted by t !μR such that
t→!

R,μ t !
μ
R, which is unique up to A. When R is additionally sort-decreasing,

we can then define a (Σ,A)-algebra of (R, μ)-canonical forms as follows:

Definition 6. Let R = (Σ,A,R) be a TRS with Σ = (S, F,≤) that is ground
μ-weakly normalizing, ground μ-confluent and ground μ-sort-decreasing. The ca-
nonical term algebra for (R, μ) is the Σ-algebra Canμ

R such that:

– for each sort s ∈ S, Canμ
R,s = { [t]A ∈TΣ/A,s | t is (R, μ)-irreducible }; and

– for each f ∈ Fw,s, Canμ
R,f :w→s([t1]A, . . . , [tn]A) = [f(u1, . . . , un) !μR]A where

ui ∈ [ti]A ∩ TΣ,si for 1 ≤ i ≤ n.

The algebra Canμ
R has a strong computation meaning: it is exactly the algebra

of values (μ-normal forms) that a user interacting with a system that evaluates
(R, μ) obtains by reduction.1 Therefore, it provides the perfect algebra for the
operational semantics of (R, μ). This model is in a sense situated between the
initial algebra TΣ, and the model for the mathematical semantics of R as an
equational theory, namely, the initial algebra TΣ/A∪R. On the one hand, by ini-
tiality we have a unique homomorphism Canμ

R : TΣ → Canμ
R which, as shown

below, may not be surjective. On the other hand, Canμ
R is more concrete than

TΣ/A∪R, and therefore a sound, but not necessarily complete, model for equa-
tional computation with R. That is, we have:

Proposition 1. If R = (Σ,A,R) with Σ = (S, F,≤) is ground μ-weakly nor-
malizing, ground μ-confluent, and ground μ-sort-decreasing, then the family of
functions {qs : Canμ

R,s → TΣ/A∪R,s}s∈S with qs : [t]A �→ [t]A∪R defines a surjec-
tive Σ-homomorphism q : Canμ

R → TΣ/A∪R.

1 If (R, μ) is μ-terminating, this is exactly true; if it is only μ-weakly normalizing, this
requires either a μ-normalizing strategy, or the use of breadth-first search.
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One typically constructs ground terminating and confluent specifications in order
to reason about the equivalence of two terms algebraically, and it is important
to be able to reduce the equality problem t =A∪R u to the convergence problem
t ↓μ

R u. When considering ordinary (not context-sensitive) rewriting, we have
t=A∪R u iff t ↓R u iff t !R =A u !R for terms t, u ∈ TΣ when R is ground weakly
normalizing, ground confluent, and ground sort-decreasing. In this case, we are
guaranteed that CanR = Canμ�

R is isomorphic to TΣ/A∪R, thus obtaining a
perfect agreement between the operational semantics ofR and the mathematical,
initial algebra semantics. In general, as we show below, this is not the case for
CS rewriting, even if R is ground μ-terminating, ground μ-confluent, and ground
μ-sort-decreasing. That is Canμ

R is sound, since t ↓μ
R u implies t=A∪R u, but in

general is not complete, i.e., t=A∪R u �⇒ t ↓μ
R u.

Consider the specification R with single sort s, symbols a :→ s, b :→ s, and
f : s→ s, and replacement map μ where μ(f) = ∅ with the rules: a→ f(a) and
b → f(a). This specification is clearly μ-weakly normalizing, μ-confluent, and
μ-sort-decreasing. However, TΣ/A∪R,s = {[a]A∪R} whereas Canμ

R,s is the infinite
set {{f(a)}, {f(b)}, {f(f(a))}, {f(f(b))}, . . .}.

The algebra Canμ
R differs from CanR in several other properties as well.

In general, it is not the case that Canμ
R(t) = t !μR. In the specification above,

Canμ
R(f(a)) = f(Canμ

R(a)) !μR = f(f(a)), whereas f(a) !μR = f(a). Additionally,
the unique homomorphism Canμ

R : TΣ/A → Canμ
R is neither surjective nor idem-

potent. For example, there is no term t ∈ TΣ , such that Canμ
R({t}) = {f(b)},

while Canμ
R({a}) = {f(a)} and Canμ

R({f(a)}) = {f(f(a))}.

4 Completeness in Context-Sensitive Rewriting

We have now shown that the usual requirements of μ-termination, μ-confluence,
and μ-sort-decreasingness are insufficient to guarantee that the operational se-
mantics of CS term rewriting corresponds to the mathematical semantics of the
equational specification. One of the goals of this section is investigating what
additional conditions we need to impose to guarantee that CS rewriting serves
as a sound and complete technique to deduce ground equalities, i.e., when is the
canonical term algebra Canμ

R isomorphic to the initial algebra TΣ/A∪R.
In this section, we introduce three notions of completeness for CS term rewrite

systems (R, μ): (1) μ-canonical completeness; (2) μ-semantic completeness; and
(3) μ-sufficient completeness. The first two notions of completeness are used to
characterize the deductive power of CS rewriting. The third is used to analyze
specifications that may not be complete in the first two senses, but may never-
theless represent useful applications of CS rewriting, such as specifying infinite
data-structures. Later, in Section 5, we will show how these three completeness
properties can be checked for specifications satisfying appropriate requirements
such as left-linearity, ground μ-weak normalization, ground μ-confluence, and
ground μ-sort-decreasingness.
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4.1 μ-Canonical Completeness

The first property we consider is whether the canonical forms of CS rewriting
and ordinary rewriting agree:

Definition 7. A TRS R = (Σ,A,R) is μ-canonically complete if every (R, μ)-
irreducible term t ∈ TΣ is R-irreducible.

The theorem below shows that, for specifications that are ground μ-weakly nor-
malizing and ground confluent, canonical completeness is enough to imply that
CS and ordinary rewriting agree on convergence relations.

Theorem 1. If a TRS R is ground μ-weakly normalizing, μ-canonically com-
plete, and ground confluent, then for t, u ∈ TΣ, t ↓R u iff t ↓μ

R u.

As a corollary, we observe that this class of specifications is μ-confluent.

Corollary 1. If R is ground μ-weakly normalizing, μ-canonically complete, and
ground confluent, then R is ground μ-confluent.

In a similar vein, we can show ground μ-sort-decreasingness ofR by showing that
R is ground μ-weakly normalizing, μ-canonically complete, and sort-decreasing.

Theorem 2. If R is ground μ-weakly normalizing, μ-canonically complete, and
ground sort-decreasing, then R is ground μ-sort-decreasing.

Together, Corollary 1 and Theorem 2 provide a means to check μ-confluence and
μ-sort-decreasingness for μ-weakly normalizing, μ-canonically complete, conflu-
ent, and sort-decreasing specifications. Since one can prove μ-termination with
existing tools (4; 8; 17), and check μ-canonical completeness of left-linear spec-
ifications with the decision procedure in Section 5.2, this eliminates the need
for specialized CS-aware checking procedures for this class of specifications. The
case of ground weak normalization and ground μ-weak normalization for μ-ca-
nonically complete specification yields a relation in the other direction.

Theorem 3. If R is ground μ-weakly normalizing and μ-canonically complete,
then R is ground weakly normalizing.

On the other hand, if R is ground weakly normalizing and μ-canonically com-
plete, it may not be ground μ-weakly normalizing. Let R have the rules: f(x)
→ f(x), a→ b, and f(b)→ b. R is ground weakly normalizing, because every
term can reduce to the R-irreducible term b. Given the replacement map μ with
μ(f) = ∅, R is μ-canonically complete, because b is the only (R, μ)-irreducible
term as well. However, R is not μ-weakly normalizing, because f(a) �→∗

R,μ b.
As an example of a μ-canonically complete specification, we present a Maude

module below for computing the factorial of a natural number.
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fmod FACTORIAL is protecting NAT .
var X Y Z : Nat .
op p : Nat -> Nat .
eq p(s(X)) = X . eq p(0) = 0 .
op if0 : Nat Nat Nat -> Nat [strat(1 0)].
eq if0(0, Y, Z) = Y . eq if0(s(X), Y, Z) = Z .
op fact : Nat -> Nat .
eq fact(X) = if0(X, s(0), X * fact(p(X))) .

endfm

This specification protects the built-in NAT specification, which contains con-
structor operators 0 and s for for zero and successor respectively, along with
defined operators for plus and times. Predecessor p is defined as usual, and the
operator if0 is annotated with a strategy strat(1 0), indicating that only the
first argument should be evaluated. Since the other operators are not given a
strategy, Maude uses its default strategy, which evaluates every argument. In
effect, these declarations define a replacement map μ where μ(if0) = {1} and
μ(f) = {1, . . . , arity(f)} for f �= if0. Using if0, factorial can be defined with a
single equation.

Without the strategy declaration on if0, this specification is not terminat-
ing, and evaluating fact(0) quickly leads to a segmentation fault in the Maude
interpreter. However, with the given replacement map μ, the specification is
μ-terminating. Moreover, it is μ-canonically complete, ground μ-confluent, and
ground μ-sort-decreasing. Since there is only one sort, μ-sort-decreasingness is
obvious. As the specification is left-linear, the decision procedure we introduce in
Section 5.2 will allow us to automatically check its μ-canonically completeness.
To see that it is ground μ-confluent one can just observe that it is confluent
(indeed, orthogonal), and use Corollary 1.

4.2 μ-Semantic Completeness

Canonical completeness means that CanR,s = Canμ
R,s for each sort s ∈ S. By

itself, this is not enough to immediately imply that Canμ
R and TΣ/A∪R are iso-

morphic. This is implied by another notion of completeness, called μ-semantic
completeness, which we define below.

Definition 8. A TRS R = (Σ,A,R) is μ-semantically complete iff for all t, u ∈
TΣ, t ↓μ

R u iff t=A∪R u.

This definition at the syntactic level of terms captures the agreement between op-
erational semantics and mathematical semantics that we want when the canon-
ical algebra Canμ

R is well-defined.

Theorem 4. If R is ground μ-weakly normalizing, ground μ-confluent, and
ground μ-sort-decreasing, then R is μ-semantically complete iff Canμ

R is iso-
morphic to TΣ/A∪R.

The next question that we address is how to check that a specification is μ-
semantically complete. The results in the previous section on μ-canonical com-
pleteness lead to the following result:
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Theorem 5. A TRS R that is ground μ-weakly normalizing, μ-canonically com-
plete, ground confluent, and ground sort-decreasing is μ-semantically complete.

As a corollary, we can easily obtain checkable conditions under which all three
of the algebras Canμ

R, CanR and TΣ/A∪R are isomorphic.

Corollary 2. If R is ground μ-weakly normalizing, ground μ-canonically com-
plete, ground confluent, and ground sort-decreasing, then Canμ

R and CanR are
both well-defined and isomorphic to TΣ/A∪R.

When the specification R is ground μ-weakly normalizing, ground confluent,
and ground sort-decreasing, μ-canonical completeness is a sufficient condition
to show μ-semantic completeness, but it turns out not to be a necessary condi-
tion. For example, letR have the rules: f(f(x)) → f(x), a→ b, and f(b)→ f(a),
and let μ be the replacement map with μ(f) = ∅. The initial algebra contains
two equivalence classes: one with the constants a and b, the other with terms
containing f . The (R, μ)-canonical terms are b and f(a), and it is easy to show
that Canμ

R and TΣ/A∪R are isomorphic. Since R is also ground μ-weakly nor-
malizing, ground μ-confluent and ground μ-sort decreasing, R is μ-semantically
complete by Theorem 4. However, f(a) is R-reducible, leaving b the only R-
irreducible term, and so R is not μ-canonically complete. In addition to not
being μ-canonically complete, R is not ground weakly normalizing. However, if
R is ground weakly normalizing, μ-semantic completeness implies μ-canonical
completeness.

Theorem 6. If R is ground weakly normalizing and μ-semantically complete,
then R is μ-canonically complete.

In other words, if R is ground weakly normalizing and not μ-canonically com-
plete, it is not μ-semantically complete either.

4.3 μ-Sufficient Completeness

Although μ-canonical completeness and μ-semantic completeness are useful no-
tions of completeness in CS rewriting, there are many interesting applications
of CS rewriting, especially those involving infinite data structures, that are not
μ-semantically complete. As an example, we present a typed version of a speci-
fication of infinite lists from (16) in Maude syntax:
fmod INF-LIST is protecting NAT .

sorts Nat? List . subsort Nat < Nat? .
op none : -> Nat? [ctor].
op [] : -> List [ctor].
op _:_ : Nat List -> List [ctor strat(1 0)].
vars M N : Nat . var L : List .
op sel : Nat List -> Nat? .
eq sel(0, N : L) = N . eq sel(s(M), N : L) = sel(M, L) .



On the Completeness of Context-Sensitive Order-Sorted Specifications 239

op from : Nat -> List .
eq from(M) = M : from(s(M)) .
op first : Nat List -> List .
eq first(0, L) = [] . eq first(s(M), N : L) = N : first(M, L) .

endfm

The term from(M) represents the infinite list “M : M + 1 : . . .”, and there are
functions for obtaining the ith element in a list and the first n elements in the list.
This specification is an interesting use of CS rewriting to obtain a terminating
method to execute a non-terminating rewrite system. Although the equation for
from is non-terminating, it is μ-terminating because of the strategy on “:”.

The specification INF-LIST is not μ-canonically complete, and its canonical
algebra is not isomorphic to the initial algebra of the equational theory given by
its axioms. For example 0 : from(s(0)) and 0 : s(0) : from(s(s(0))) are distinct
μ-canonical terms, but 0 :from(s(0)) =INF−LIST 0 :s(0) : from(s(s(0))). In order
to check properties of specifications like INF-LIST that are not μ-semantically
complete, we therefore need techniques that analyze CS specifications directly.
The case of μ-termination is well understood (7; 18; 22), and the case of μ-con-
fluence has already been studied in (14).

Another interesting property that seems not to have been studied for CS spec-
ifications is sufficient completeness. Sufficient completeness in term-rewriting
specifications means that enough equations have been defined so that all terms
reduce to constructor terms. For example, a sufficiently complete specification
involving arithmetic over the natural numbers should reduce every term con-
taining plus and times to a term containing only zero and successor.

Although simple, this definition of sufficient completeness seems too strong in
the context of CS specifications. The reason is that the non-replacing positions
of a symbol intentionally do not reduce their arguments. Accordingly, our def-
inition of μ-sufficient completeness allows defined symbols in the non-replacing
positions of canonical terms, provided that all replacing positions have construc-
tor symbols.

Definition 9. Let R be a ground μ-weakly normalizing and ground μ-sort-de-
creasing TRS R = (Σ,A,R) with Σ = (S, F,≤) equipped with a indexed family
of constructor symbols C = {Cw,s}(w,s)∈S∗×S with each Cw,s ⊆ Fw,s. We say
that R is μ-sufficiently complete relative to C iff for all (R, μ)-irreducible terms
t ∈ TΣ, posμ(t) ⊆ posC(t) where

posC(t) = {i ∈ pos(t) | t|i = c(t̄) ∧ c∈Cw,s ∧ t̄∈ TΣ,w}.

Our definition of μ-sufficient completeness reduces to the usual definition of
sufficient completeness when every position is a replacing position, i.e., μ = μ�.
Therefore, we say in this paper that a specification R is sufficiently complete
relative to C iff it is μ�-sufficiently complete relative to C.

Theorem 7. If R is ground μ-weakly normalizing, μ-canonically complete, and
ground sort-decreasing, then R is μ-sufficiently complete relative to C iff it is
sufficiently complete relative to C.
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5 Checking μ-Completeness Properties

In the left-linear case, we are able to reduce the μ-canonical completeness and
μ-sufficient completeness properties to an emptiness problem for Propositional
Tree Automata, a class of tree automata introduced in (12) which is closed under
Boolean operations and an equational theory. We are further able to use the
results of Theorem 5 to have sufficient conditions for showing the μ-semantic
completeness of R when R is left-linear, μ-weakly normalizing, μ-canonically
complete, ground confluent, and ground sort-decreasing.

5.1 Propositional Tree Automata

We now define Propositional Tree Automata, first introduced in (12). We extend
the definition of (12) from unsorted signatures to many-sorted signatures. We
also use production rules α := f(β1, . . . , βn) in lieu of rewrite rules f(β1, . . . , βn)
→ α in the definition to reflect a change in how the rules are interpreted. The
definition using rewrite rules in (12) and the definition below are equivalent when
the equations in the signature are linear. They are not equivalent, in general,
when considering non-linear equations such as idempotence f(x, x) = x. We
think that the definition given below is more useful in applications involving
non-linear equations, and if we did not use this formalization, we would have to
restrict later results in this paper involving tree automata to the linear case.

Definition 10. A Propositional Tree Automaton (PTA) A = (E , Q, Φ,Δ) is a
tuple in which:

– E = (Σ,E) is an many-sorted equational theory with Σ = (S, F );
– Q = {Qs}s∈S is a S-indexed family of sets of states disjoint from the func-

tion symbols in F ;
– Φ = {φs}s∈S is a S-indexed family of propositional formulae where the

atomic propositions in φs are states in Qs; and
– Δ contains transition rules, each with one of the following forms: (1) α :=
f(β1, . . . , βn) where f ∈ Fs1...sn,s, α ∈ Qs, and each βi ∈ Qsi for 1 ≤ i ≤ n;
or (2) α := β where α, β ∈ Qs.

For a term t ∈ TΣ and state α ∈ Q, we write α :=A t iff (1) t=E f(u1, . . . , un)
and there is a rule α :=A f(β1, . . . , βn) in Δ such that βi :=A ui for 1 ≤ i ≤ n,
or (2) there is a rule α :=A β in Δ and β :=A t. A term t ∈ TΣ,s is accepted by
A if the complete set of states that generate t, genA(t) = {α ∈ Qs | α :=A t },
is a model of φs, i.e. genA(t) |= φs. Boolean formulae are evaluated using their
standard interpretations:

P |= q if q ∈ P, P |= φ1 ∨ φ2 if P |= φ1 or P |= φ2, and P |= ¬φ if P �|= φ.

The language accepted by A is the S-indexed family L(A) = {Ls(A)}s∈S of sets
of terms accepted by A, i.e., Ls(A) = {t ∈ TΣ,s | genA(t) |= φs}.
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Given a PTA A = (E , Q, Φ,Δ) with E = (Σ,E), we let A∅ denote the same PTA

formed over the free theory with symbols in Σ, i.e., A∅ = ((Σ,∅), Q, Φ,Δ). By
using grammar rules instead of rewrite rules in the definition of PTA, we are able
to show the following for arbitrary equational theories that may be non-linear.
This was proven for equational tree automata by Verma in (21) — the proof in
this case is identical.

Lemma 2. Given a PTA A = (E , Q, Φ,Δ) with E = (Σ,E), if α :=A t, then
there must be a term u ∈ TΣ such that t=E u and α :=A∅

u.

The languages recognized by PTA over a theory E are precisely those languages
that are in the Boolean closure of regular equational tree automata languages
sharing the same theory E . This is an important property, because in general,
equational tree automata are not closed under Boolean operations (12).

We can use PTA to reduce the CS completeness properties for a TRS R =
(Σ,A,R) into the emptiness test for a PTA with the same axioms A. When A
consists of any combination of associativity, commutativity, and identity axioms,
the techniques from (12) can be used to check the emptiness of the corresponding
PTA. It is know that the emptiness problem for PTA is decidable A contains any
combination of associativity, commutativity, and identity and every associative
symbol is also commutative. If A contains an associative symbol that is not
commutative, the problem is not decidable. However, there is a semi-algorithm
in (12) that can always show non-emptiness, and can often show emptiness in
practice by using machine learning techniques.

5.2 Checking μ-Canonical Completeness

From the definition of μ-canonical completeness, we know that R is not μ-ca-
nonically complete iff there is a term t ∈ TΣ that is R-reducible and (R, μ)-
irreducible. Therefore, we can reduce the μ-canonical completeness problem to
an emptiness problem of a PTA A by constructing an automaton that accepts
precisely those terms t ∈ TΣ that are counterexamples.

Theorem 8. Given a left-linear TRS R = (Σ,A,R), one can effectively con-
struct a PTA ACC such that R is μ-canonically complete iff L(ACC) = ∅.

Proof. (Sketch) Let Σ = (S, F,≤). ACC is a PTA with signature ΣK = (SK , FK)
as defined in Definition 5. For each sort s ∈ S, ACC contains a state αs such that
for each t ∈ TΣK , αs :=ACC t iff t ∈ TΣ,s. For each k ∈ K, ACC contains states
rk, r

μ
k for recognizing R-reducible and (R, μ) reducible terms respectively. The

acceptance formula for each k∈ SK , then just becomes φk = αk∧ rk∧¬rμ
k . The

full construction and correctness proof of ACC is in (10). 	


The algorithm for constructing the tree automaton ACC from a Maude specifica-
tion has been implemented, and integrated into the Maude Sufficient Complete-
ness Checker (11). By using the tool to check the μ-canonical completeness of
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the FACTORIAL specification given in Section 4.1, we are able to verify that it is
μ-canonically complete:

Maude> (ccc FACTORIAL .)
Checking canonical completeness of FACTORIAL ...
Success: FACTORIAL is canonically complete.

By using the tool to check the INF-LIST specification, we find a counterexample
showing that the specification is not μ-canonically complete:
Maude> (ccc INF-LIST .)
Checking canonical completeness of INF-LIST ...
Failure: The term 0 : first(0,[]) is a counterexample that is

mu-irreducible, but reducible under ordinary rewriting.

5.3 Checking μ-Semantic Completeness

Since we were able to check the μ-canonical completeness of a left-linear specifica-
tion R using the results in the previous section, using the results in Theorem 5,
the μ-semantic completeness of specifications can be mechanically checked by
showing: (1) μ-canonical completeness with the checker in the previous section;
(2) μ-terminating with a CS termination tool such as (4; 8; 17); and (3) con-
fluence and sort-decreasingness with a tool such as the Maude Church-Rosser
checker. This allows us to show that, for example, the FACTORIAL specification
is μ-semantically complete.

5.4 Checking μ-Sufficient Completeness

Using our definition of μ-sufficient completeness, we are able to extend the Maude
Sufficient Completeness Checker in (11) to the CS case.

Theorem 9. Given a left-linear TRS R that is ground μ-weakly normalizing
and ground μ-sort-decreasing, one can construct a PTA ASC such that R is μ-
sufficiently complete relative to C iff L(ASC) = ∅.

We have also implemented an algorithm for constructing the automaton ASC

from a CS Maude specification automatically. In this case, the checker succeeds
on the FACTORIAL example, as expected:

Maude> (mu-scc FACTORIAL .)
Checking the mu-sufficient completeness of FACTORIAL ...
Success: FACTORIAL is mu-sufficiently complete assuming that it is

ground mu-weakly normalizing and ground mu-sort-decreasing.

Running the checker on the INF-LIST example yields an error:

Maude> (mu-scc INF-LIST .)
Checking the mu-sufficient completeness of INF-LIST ...
Failure: The term sel(0,[]) is an mu-irreducible term with sort

Nat? in INF-LIST with defined symbols in replacement positions.
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It turns out that the rewrite system given in (16) was missing equations for
defining sel and first when the second argument was the empty list. If we add
the equations “sel(M, []) = none” and “first(M, []) = []” to the Maude
specification, the μ-sufficient completeness check succeeds.

6 Related Work and Conclusions

An earlier paper by Lucas (14) has a section on relating the R and (R, μ)-canon-
ical forms. In one of the results, a replacement map μB

R is constructed fromR and
the subset of symbols B ⊆ F , and results show that R is μ-canonically complete
if the (R, μ)-irreducible terms are in TB, and μ ⊇ μB

R. This condition is sufficient
to show that the FACTORIAL example is μ-canonically complete. However it is
easy to give examples where R is μ-canonically complete, but μ �⊇ μB

R. Since
we have now a decision procedure for μ-canonical completeness, by varying the
replacement map μ, one can use our results to find all minimal replacement
maps μ for which R is μ-canonically complete.

It would be useful to investigate the relationships between the work we have
presented here and infinite rewriting and infinite normal forms, e.g., (1; 3), which
has been extended to the CS in (15). In particular, it seems interesting to investi-
gate the relations between algebras of finite and infinite terms, and the extension
of sufficient completeness to infinite normal forms.

We have proposed a new model-theoretic semantics for order-sorted CS spec-
ifications in the form of the μ-canonical term algebra Canμ

R. And we have in-
vestigated three notions of CS completeness: (1) μ-canonical completeness with
respect to canonical forms; (2) μ-semantic completeness with respect to equa-
tional deduction; and (3) μ-sufficient completeness with respect to constructors.
We have also proposed and implemented decision procedures based on proposi-
tional tree automata that, under reasonable assumptions on the CS specification
(which can be discharged by other existing tools), ensure that it satisfies the
different μ-completeness properties. These results provide new ways of reason-
ing formally about CS equational programs, not only to allow a programmer
to check that his/her program behaves as desired, but also to prove properties:
for example it is sound to use an inductive theorem prover to reason about a
μ-semantically complete CS program, whereas in general such reasoning may be
unsound, since Canμ

R may not satisfy the equations of R and may have “junk”
data outside the image from the initial algebra.

We think that it would be useful to extend the concepts and results presented
here to: (1) more general conditional CS specifications in membership equational
logic (19); (2) CS specifications with non-left-linear rules, for which the tree
automata techniques proposed in (13) could be quite useful; and (3) infinite
μ-normal forms and infinitary rewriting, as discussed above.

Acknowledgements. The authors would like to thank Salvador Lucas and the
anonymous referees for comments that helped to improve the paper.
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Abstract. This paper presents KOOL, a concurrent, dynamic, object-
oriented language defined in rewriting logic. KOOL has been designed as
an experimental language, with a focus on making the language easy to
extend. This is done by taking advantage of the flexibility provided by
rewriting logic, which allows for the rapid prototyping of new language
features. An example of this process is illustrated by sketching the addi-
tion of synchronized methods. KOOL also provides support for program
analysis through language extensions and the underlying capabilities of
rewriting logic. This support is illustrated with several examples.

Keywords: object-oriented languages, programming language seman-
tics, term rewriting, rewriting logic, formal analysis.

1 Introduction

Language design is both an art and a science. Along with formal tools and
notations to address the science, it is important to have good support for the
“art”: tools that allow the rapid prototyping of language features, allowing new
features to be quickly developed, tested, and refined (or discarded). Rewriting
logic, briefly introduced in Section 2, provides a good environment for addressing
both the art and the science: formal tools for specifying language semantics and
analyzing programs, plus a flexible environment for adding new features that
automatically provides language interpreters. As an example of the capabilities
of this model of language design, we have created KOOL, a concurrent, dy-
namic, object-oriented language built using rewriting logic. The KOOL language
and environment are described in 3; since KOOL is focused on language experi-
mentation, Section 4 illustrates this by sketching the addition of synchronized
methods, a concurrency-related feature borrowed from the Java language [7].
KOOL also inherits support for analysis from rewriting logic, which has been
enhanced with language constructs and runtime support. This is explored in
Section 5. Section 6 concludes, summarizing and discussing some related work.
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A sister paper [10] presents more detailed information about formal analysis of
KOOL programs, including a detailed look at how design decisions in rewriting
logic definitions of object oriented languages impact analysis performance.

2 Rewriting Logic

Rewriting logic [12,13,14,15] is a computational logic built upon equational logic
which provides support for concurrency. In equational logic, a number of sorts
(types) and equations are defined. The equations specify which terms are con-
sidered to be equal. All equal terms can then be seen as members of the same
equivalence class of terms, a concept similar to that from the λ calculus with
equivalence classes based on α and β equivalence. Rewriting logic provides rules
in addition to equations, used to transition between equivalence classes of terms.
This allows for concurrency, where different orders of evaluation could lead to
non-equivalent results, such as in the case of data races. The distinction between
rules and equations is crucial for analysis, since terms which are equal accord-
ing to equational deduction can all be collapsed into the same analysis state.
Rewriting logic is connected to term rewriting in that all the equations and
rules of rewriting logic, of the form l = r and l ⇒ r, respectively, can be trans-
formed into term rewriting rules by orienting them properly (necessary because
equations can be used for deduction in either direction), transforming both into
l → r. This provides a means of taking a definition in rewriting logic and using
it to “execute” a term using standard term rewriting techniques.

3 KOOL

KOOL is a concurrent, dynamic, object-oriented language, loosely inspired by,
but not identical to, the Smalltalk language [6]. KOOL includes support for stan-
dard imperative features, such as assignment, conditionals, and loops with break
and continue. KOOL also includes support for many familiar object-oriented fea-
tures: all values are objects; all operations are carried out via message sends;
message sends use dynamic dispatch; single inheritance is used, with a desig-
nated root class named Object; methods are all public, while fields are all pri-
vate outside of the owning object; and scoping is static, yet declaration order for
classes and methods is unimportant. KOOL allows for the run-time inspection of
object types via a typecase construct, and includes support for exceptions with
a standard try/catch mechanism.

3.1 KOOL Syntax

The syntax of KOOL is shown in Figure 1. The lexical definitions of literals
are not included in the figure to limit clutter, but are standard (for instance,
booleans include both true and false, strings are surrounded with double quotes,
etc). Most message sends are specified in a Java-like syntax; those representing
binary operations can also be used infix (a + b desugars to a.+(b)), with these
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Program P ::= C
∗

E

Class C ::= class X is D∗ M∗ end | class X extends X′ is D∗ M∗ end

Decl D ::= var {X,}+ ;

Method M ::= method X is D∗ S end | method X ({X′,}+ ) is D∗ S end

Expression E ::= X | I | F | B | Ch | Str | (E) | new X | new X ({E,}+) |

self | E Xop E′ | E.X(())? | E.X({E,}+) | super() |

super.X(())? | super.X({E,}+) | super({E,}+) | primInvoke({E,}+)

Statement S ::= E <- E
′; | begin D

∗
S end | if E then S (else S

′
)
? fi |

try S catch X S end | throw E ; | while E do S od |

for X <- E to E′ do S od | break; | continue; |

return (E)
?
; | S S

′ | E; | assert E; | X: | spawn E ; |

acquire E ; | release E ; | typecase E of Cs
+

(else S)
? end

Case Cs ::= case X of S

X ∈ Name, I ∈ Integer, F ∈ Float, B ∈ Boolean, Ch ∈ Char, Str ∈ String, Xop ∈ Operator Names

Fig. 1. KOOL Syntax

class Point is
var x,y;

method Point(inx, iny) is
x <- inx; y <- iny;

end

method toString is
return ("x = " + x.toString() + " and y = "

+ y.toString());
end

end

class ColorPoint extends Point is
var c;

method ColorPoint(inx, iny, inc) is
super(inx,iny); c <- inc;

end

method toString is
return (super.toString() + " and c = "

+ c.toString());
end

end

Fig. 2. Inheritance and Built-ins in KOOL

infix usages all having the same
precedence and associativity. Fi-
nally, semicolons are used as
statement terminators, not sep-
arators, and are only needed
where the end of a statement may
be ambiguous – at the end of
an assignment, for instance, or at
the end of each statement inside
a branch of a conditional, but not
at the end of the conditional it-
self, which ends with fi.

To get a feel for the language,
two sample class definitions are
presented in Figure 2. These de-
finitions provide a simple ex-
ample of inheritance and calls
to super-methods using a famil-
iar Point/ColorPoint example.
Class Point represents a point
in 2D space, with x and y co-
ordinates, and implicitly inher-
its from (extends) class Object.
Class ColorPoint explicitly extends class Point, adding a new variable c to
represent the color of the point. The constructor for ColorPoint calls its
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parent constructor, passing the x and y coordinates, while the version of
toString defined in ColorPoint also uses super, here to invoke the parent
version of the toString method. + is defined in the String class as string con-
catenation.

State

StringList

ControlEnvironment

StringList Store ClassSet

MethodStack ExceptionStack LoopStackContinuation

Object Name

cset
memoutput

input

k mstack estack
lstack

Nat

nextloc

Thread

env control
cobj

cclass

t

LockSet

LockTupleSet

busy

holds

Name Nat

lbl tid

Nat

nextTid

Fig. 3. KOOL State Infrastructure

3.2 KOOL Semantics

The semantics of KOOL is defined using Maude [2,3], a high-performance lan-
guage and engine for rewriting logic. The current program is represented as a
“soup” (multiset) of nested terms representing the current computation, mem-
ory, locks held, etc. A visual representation of this term, the state infrastructure,
is shown in Figure 3. Here, each box represents a piece of information stored in
the program state, with the text in each box indicating the information’s sort,
such as Name or LockSet. Edges between boxes represent the names used to
reference the information, such as cclass (the current class context) or busy (a
set of all locks held by any thread in the program), and are defined as operations
from the boxed to the containing sort (i.e., cclass is an operation from Name
to Thread, so it can be treated as thread information). Information stored in
the state can be nested: State contains at least one Thread, accessed with t,
which contains Control information, accessed with control. The most impor-
tant piece of information is the Continuation, located in Control and named
k, which is a first-order representation of the current computation, made up of
a list of instructions separated by ->. The continuation can be seen as a stack,
with the current instruction at the left and the remainder (continuation) of the
computation to the right. This continuation-based methodology is described in
more detail in papers about the rewriting logic semantics project [14,15].

Figure 4 shows examples of Maude equations and rules included in the KOOL
semantics. The first three equations (shown with eq) process a conditional. The
first indicates the value of the guard expression E must be computed before a
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branch statement (S or S’) is evaluated; to do this, E is put before the branches on
the continuation, with the branches saved for later use by putting them into an if
continuation item. The second and third execute the appropriate branch based
on whether the guard evaluated to true or false. The fourth, a conditional
rule (represented with crl), represents the lookup of a memory location. The
rule states that, if the next computation step in this thread is to look up the
value at location L, and if that value is V (:= binds V to the result of reducing

eq stmt(if E then S else S’ fi) = exp(E) -> if(S,S’) .
eq val(primBool(true)) -> if(S,S’) = stmt(S) .
eq val(primBool(false)) -> if(S,S’) = stmt(S’) .

crl t(control(k(llookup(L) -> K) CS) TS) mem(Mem) =>
t(control(k(val(V) -> K) CS) TS) mem(Mem)

if V := Mem[L] /\ V =/= undefined .

Fig. 4. Sample KOOL Rules

Mem[L], the memory lookup
operation), and if V is not
undefined (i.e. L and V are
actually in Mem), the re-
sult of the computation is
the value V. This must be
a rule, since memory reads
and writes among different
threads could lead to non-
equivalent behaviors. CS and
TS match the unreferenced
parts of the control and
thread state, respectively, while K represents the rest of the computation in this
thread. Note that, since the fourth rule represents a side-effect, it can only be
applied when it is the next computation step in the thread (it is at the head of
the continuation), while the first three, which don’t involve side-effects, can be
applied at any time.

3.3 KOOL Implementation

There is an implementation of KOOL available at our website [11], as well as a
web-based interface to run and analyze KOOL programs such as those presented
here. The website also contains current information about the language, which
is constantly evolving. A companion technical report [9] explains the syntax and
semantics of KOOL in more detail.

KOOL programs are generally run using the runkool script, since running a
KOOL program involves several steps and tools, and since programs can be run
in different modes (execution, search, and model checking, each with various

KOOL

Program runkool.sh

KOOL

Prelude

Merged

KOOL

Source
SDF

KOOL

Syntax

Definition

SDF ATerm of

KOOL

Program

KOOL ATerm 

Processor

Maude-Syntax

KOOL

Program
Maude

Execution

Output

Search

Result(s)

Model

Checking

Result

Fig. 5. KOOL Program Evaluation/Analysis
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options). First, the KOOL prelude, a shared set of classes for use in user pro-
grams, is added to the input program. This program is then parsed using the SDF
parser [19], which takes the program text and a syntax definition file as input.
The parser produces a file in ATerm format, an SDF format used to represent
the abstract syntax tree. A pretty printer then converts this into Maude, using
prefix versions of the operators to prevent parsing difficulties. Finally, Maude
is invoked by runkool with the language semantics and the Maude-format pro-
gram, generating the result based on the execution mode. A graphical view of
this process is presented in Figure 5.

4 Extending KOOL

Because of its use in our language research and in teaching, the KOOL system
has been designed to be extensible. To illustrate the extension process at a high
level, an example extension, synchronized methods, is presented here. Further
details, including a full implementation, are available at the KOOL website [11].

The KOOL language has a fairly simple model of concurrency based on
threads, which each contain their own continuation and execution context (shown
in Figure 3). Each program starts with one thread. The spawn statement can
then be used to create more threads, which execute independently of one an-
other. All mutual exclusion is handled with object-level locks, acquired using
acquire and released with release. Objects can only be locked by one thread
at a time, although that thread may lock the same object more than once. If this
happens, the thread needs to release an equivalent number of locks on the object
before it can be acquire’d by another thread. synchronized methods, similar
to those in Java, would provide a higher-level abstraction over these locking
primitives. In Java, methods tagged with the synchronized keyword implicitly
lock the object that is the target of the method call, allowing only one thread
to be active in all synchronized methods on a given object at a time. We will
assume the same semantics for KOOL.

The syntax changes to add synchronized methods are minor: the keyword
needs to be added to the method syntax, which then also needs to be reflected
in the Maude-level syntax for KOOL. In SDF, two context-free definitions for
Method nonterminals need to be added, one for synchronizedmethods with pa-
rameters, the other for those without. Similar changes need to occur in Maude,
where one additional syntax operation needs to be added. Finally, the pretty
printer that translates from SDF ATerms into Maude needs to be modified to
handle the two new SDF definitions; this change is fairly mechanical, and meth-
ods to eliminate the need for this are being investigated.

The changes to the semantics are obviously more involved. In KOOL, as in
Java, synchronized methods should work as follows:

– a call to a synchronized method should implicitly acquire a lock on the
message target before the method body is executed;

– a return from a synchronized method should release this lock;
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– additional calls to synchronized methods on the same target should be al-
lowed in the same thread;

– exceptional returns from methods should release any locks implicitly ac-
quired when the method was called.

A quick survey of these requirements shows that adding synchronized methods
will change more than the message send semantics – the semantics for exceptions
will need to change as well, to account for the last requirement.

To handle the first requirement, a new lock can be acquired on the self object
at the start of any synchronized method simply by adding a lock acquisition
to the start of the method body, which can be done when the method definition
is processed. Lock release cannot be handled similarly, though, since there may
be multiple exits from a method, including return statements and exceptional
returns. This means that locks acquired on method entry will need to be tracked
so they can be properly released on exit. This can be accomplished by recording
the lock information in the method and exception stacks (mstack and estack
in Figure 3) when the lock is acquired, since these stacks are accessed in the
method return and exception handling semantics. With this in place, the second
and fourth requirements can be handled by using this recorded information to
release the locks on method return or when an exception is thrown. Finally, the
third point is naturally satisfied by the existing concurrency semantics, which
allow multiple locks on the same object (here, self) by the same thread. Overall,
adding synchronized methods to the KOOL semantics requires:

– 2 modified operators (to add locks to the two stack definitions),
– 4 modified equations (two for method return, two for exception handling),
– 4 new operators (to record locks in the stacks, to release all recorded locks),
– 6 new equations (to record locks in the stacks, to release all recorded locks).

With these changes, KOOL includes 243 operators, 334 equations, and 15 rules.

5 Analyzing KOOL Programs

KOOL program analysis is based around the underlying functionality provided
by Maude and rewriting logic, including the ability to perform model check-
ing based on LTL formulae and program states and the ability to perform a
breadth-first search of the program state space. These capabilities have been
extended with additions to the KOOL language, including assertion checking ca-
pabilities that interact with the model checker and program labels that can be
used in LTL formulae to check progress (or the lack thereof) between program
points.

5.1 Breadth-First Search

The thread game is a concurrency problem defined as follows: take a single vari-
able, say x, initialized to 1. In two threads, repeat the assignment x <- x + x
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class ThreadGame is
var x;

method ThreadGame is
x <- 1;

end

method Add is
while true do x <- x + x; od

end

method Run is
spawn(self.Add); spawn(self.Add);
console << x;

end
end
(new ThreadGame).Run

Fig. 6. Thread Game

forever. In another thread, output the value
of x. What values is it possible to output?
As has been proved [16], it is possible to
output any natural number ≥ 1. A KOOL
version of the thread game is shown in
Figure 6.

To check if a specific value can be out-
put, one could run the program repeatedly,
or try model checking. However, with the
program’s infinite state space and nonde-
terministic behavior, this may never yield
the desired result. Maude’s search capa-
bility can be used, though, either to enu-
merate possible values (obviously not all
possible values here) or to search for a spe-
cific value. For instance, searching for 10
yields a result, indicating that 10 is one of
the possible output values.

class WriteNum is
var num;

method WriteNum(n) is
num <- n;

end

synchronized method set(n) is
num <- n;

end

synchronized method write is
console << "Start:" << num;
self.set(num + 10);
self.set(num - 8);
console << "End:" << num;

end
end

class Driver is
method run is

var w1;
w1 <- new WriteNum(10);
spawn (w1.write);
w1.set(20);
spawn (w1.write);

end
end

(new Driver).run

Fig. 7. Synchronized Methods

Search can also be useful when adding
new language features. For instance, an ex-
ample of synchronized methods in KOOL is
shown in Figure 7. Here, class WriteNum con-
tains two synchronized methods. When the
write method is called, the starting value
of the number stored in member variable
num is written to the console, some simple
arithmetic operations are performed on it,
and then the final value is written. The set
method assigns a new value to num. Since
both methods are marked synchronized,
it should be the case that, for any given
object, once one thread is executing either
method, another thread that tries to exe-
cute either will wait. To test this, the Driver
class creates a new object of class WriteNum,
spawns one call to write, creating a new
thread, modifies the value stored in the ob-
ject using set, and then creates a second
thread, also calling write. Using search to
determine possible program outputs reveals
that there are only two possible solutions,
with the call to set either occurring before
the first spawned thread runs (with output
"Start:","20","End:","22","Start:","22","End:","24"), or after it com-
pletes (printing "Start:","10","End:","12","Start:","20","End:","22").



254 M. Hills and G. Roşu

By contrast, with the synchronized keywords removed, there are 470 solutions,
corresponding to all possible orderings of output based on various interleavings
of the main thread with the two spawned threads.

5.2 Model Checking

class Fork is end

class Philosopher is
method Run(id,left,right) is
while (true) do

hungry:
acquire left; acquire right;

eating:
release left; release right;

od
end

end

Fig. 8. Philosophers and Forks

Programs in KOOL can take advantage of
Maude’s model-checking capabilities. The
Maude model checker uses LTL formulae,
which are written against the state in-
frastructure. Since the state can be very
complex, KOOL allows labels, which can be
referenced in LTL formulae, to be included
in the program source. For example, Figure
8 contains a KOOL fragment of the Dining
Philosophers problem. Each Philosopher
will try to lock left and right Forks be-
fore eating, releasing them when finished.
We can check for deadlock freedom by verifying that reaching label hungry:
implies always eventually reaching label eating: (always eventually acquiring
both locks). Results for model checking a deadlocking and a fixed version of
the problem with 5, 6, and 8 philosophers are shown in Figure 9. More details
about model checking and search in KOOL, including further discussion of la-
bels, additional examples of search, additional performance measurements, and
an investigation of the impact of language design on analysis performance can
be found in a related paper [10].

Philosophers # of States Find Counterexample/s Prove Deadlock Freedom/s

5 634 1.989 23.014

6 2943 8.444 130.174

8 63505 278.276 4975.583

3.40 GHz P4, 2 GB RAM, OpenSuSE 10.2, kernel 2.6.16.27-0.6-smp, Maude 2.2.

Fig. 9. Dining Philosophers Verification Time

6 Conclusions and Related Work

In this paper we have presented the KOOL language as a concrete application of
rewriting logic to language design and program analysis, illustrating the process
of language extension and highlighting the provided analysis capabilities. KOOL
has been used as a basis for both teaching [17] and research in language se-
mantics, design, analysis, and verification. The evolving nature of KOOL seems
to make it especially appealing for classroom use, where student projects have
included adding reflection and additional concurrency features.
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There is a large volume of work related to defining programming languages
using executable techniques. Probably the most related is the JavaFAN project,
which defined formal analysis tools for both the Java language [4] and JVM byte-
code [5]. In contrast to our work, which has focused on the design of languages
and feature prototyping, JavaFAN has focused on formal methods applications,
with the goal of being a competitive Java formal analysis tool. The published
work on Java [4], for instance, is a 4 page tools paper that provides a short
summary of the rewriting logic definition of Java, focusing instead on a descrip-
tion of the tool, leaving the language definition unpublished. The languages are
also quite different, leading to different challenges in implementation (such as
KOOL’s use of Smalltalk-like primitives, here fragments of Maude, to implement
low-level operations).

Functional languages defined in Maude include CML [1] and Eden [8]. Work on
the latter, a parallel variant of Haskell, has also looked to Maude as a language
experimentation environment, using the module system to vary the degree of
parallelism and the scheduling algorithm. Still in the realm of term rewriting,
the ASF+SDF project [19] has focused on language prototyping and definition.
More related work can be found in papers on the rewriting logic semantics of
programming languages [14,15] and the K language definition technique [18].

Acknowledgments. We thank the anonymous reviewers for their helpful com-
ments, which have improved the quality of this paper.
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5. Farzan, A., Meseguer, J., Roşu, G.: Formal JVM Code Analysis in JavaFAN. In:
Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp.
132–147. Springer, Heidelberg (2004)

6. Goldberg, A., Robson, D.: Smalltalk-80: the language and its implementation.
Addison-Wesley Longman Publishing Co., Inc, Boston, MA, USA (1983)

7. Gosling, J., Joy, B., Steele, G.: The Java Language Definition. Addison-Wesley,
Reading (1996)

8. Hidalgo-Herrero, M., Verdejo, A., Ortega-Mallén, Y.: Using Maude and its strate-
gies for defining a framework for analyzing Eden semantics. In: Proceedings of
WRS’06, Elsevier, Amsterdam (To appear 2006)



256 M. Hills and G. Roşu
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15. Meseguer, J., Roşu, G.: The rewriting logic semantics project. Theoretical Com-
puter Science (To appear 2007)

16. Moore, J.S.: http://www.cs.utexas.edu/users/moore/publications/thread-
game.html
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Abstract. We present a method of lifting to explicit substitution calculi
some characterizations of the strongly normalizing terms of λ-calculus by
means of intersection type systems. The method is first illustrated by ap-
plying to a composition-free calculus of explicit substitutions, yielding a
simpler proof than the previous one by Lengrand et al. Then we present
a new intersection type system in the style of sequent calculus, and show
that it characterizes the strongly normalizing terms of Dyckhoff and
Urban’s extension of Herbelin’s explicit substitution calculus.

1 Introduction

Explicit substitution calculi were introduced for improving implementations of
functional programming languages based on λ-calculus. In those calculi, substi-
tution is not treated as a meta-operation on terms but rather as a new operator
in the language. Since operational properties of substitution are studied in the
object-level, unexpected behavior at the time of implementation is minimized.
Also, a fine-grained control of substitution is made available; for instance, we may
delay substitutions in order to avoid unnecessary duplication of information.

When augmenting λ-calculus with explicit substitutions, the evaluation
process is refined by reduction rules to deal with substitutions. This suggests
that reduction properties of explicit substitution calculi may vary from those of
the original λ-calculus. In fact, as shown by Melliès [17], there are simply typed
λ-terms that are not strongly normalizing when evaluated by the reduction rules
of the explicit substitution calculus in [1].

In this paper we first study a composition-free calculus of explicit substitu-
tions λx [5], in which strong normalization holds for simply typed terms. In [9],
Dougherty and Lescanne presented intersection type assignment systems for λx,
and showed that the terms typable in one of their systems are strongly nor-
malizing. For the original λ-calculus, the converse also holds, i.e., all strongly
normalizing terms are typable in an intersection type system [19]. The system
in [9], however, does not satisfy this property. Then an extended system was de-
veloped in [16] where the typable terms coincide with the strongly normalizing
ones. In the first half of this paper, we give a much simpler proof of this result
than the one in [16], illustrating how to lift the characterization result for the
original λ-calculus to an explicit substitutions setting.

F. Baader (Ed.): RTA 2007, LNCS 4533, pp. 257–272, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In the latter half of the paper, we apply our method to an explicit substi-
tution calculus studied in [11,15]. This calculus is to sequent calculus what λx-
calculus is to natural deduction. Simply typed terms of the calculus correspond
to proofs in Herbelin’s sequent calculus [12], and the reduction rules correspond
to cut-elimination steps in the sequent calculus. Although a classical variant of
Herbelin’s calculus was also developed in [7], we consider in this paper the cal-
culus of [11] because it is closer to the original λ-calculus and so better for a first
study of intersection type assignment systems based on sequent calculus. We
introduce a new type assignment system for the explicit substitution calculus,
and show that the typable terms coincide with the strongly normalizing ones.
Our proof method successfully applies to the calculus, while the method in [16]
seems difficult to apply.

Strong normalization proofs for typable terms in [9,16] use a variant of the
reducibility method, but they also rely on two lemmas in Section 3 of [9] whose
proofs are rather complicated. On the other hand, our proof of strong normaliza-
tion relies on a theorem that was proved in [4] using recursive path ordering [8]
and an encoding of λ-terms with explicit substitutions into a first-order rewriting
system. Thus, in our proof, the complicated part is solved by a well-established
result in term rewriting. This method was used for the simply typed case of the
explicit substitution calculus in [11] (see also the remark after Theorem 3).

To prove that all strongly normalizing terms are typable, we develop a novel
technique. The method in [16] uses a specific perpetual strategy or an inductive
characterization of strongly normalizing terms in the style of [20,6]. However,
such a perpetual strategy or an inductive characterization is difficult to spell out
when considering a more complex explicit substitution calculus than λx. The
idea behind our technique is instead that strongly normalizing terms are closed
under x-conversion as far as decent terms are concerned (decent terms are terms
in which every substitution body is strongly normalizing). This was pointed out
in [14] for λx− (λx with restricted garbage collection), and in [15] for the explicit
substitution calculus of [11]. For an inductive argument to work, we introduce
the notion of typably decent terms, which are defined as the terms in which every
substitution body is typable. It is then sufficient to show that typable terms are
closed under x-conversion as far as typably decent terms are concerned.

The paper is organized as follows. In Section 2 we introduce λx-calculus. In
Section 3 we characterize the strongly normalizing λx-terms by an intersection
type system in [16]. In Section 4 we introduce λx-calculus. In Section 5 we char-
acterize the strongly normalizing λx-terms by a new intersection type system.

To save space we omit some proofs in Section 5, but a full version with all
proofs is available at http://www.nue.riec.tohoku.ac.jp/user/kentaro/.

2 λx-Calculus

In this section we recall the definition and some properties of λx-calculus [5,3].
This calculus is known as the simplest explicit substitution calculus; it is up to
α-conversion and uses the minimal apparatus for substitution.
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Table 1. λx-calculus

M,N ::= x | MN | λx.M | M〈x := N〉

(Beta) (λx.M)N → M〈x := N〉

(App) (MM ′)〈x := N〉 → M〈x := N〉M ′〈x := N〉
(Abs) (λy.M)〈x := N〉 → λy.M〈x := N〉
(Var) x〈x := N〉 → N

(gc) M〈x := N〉 → M if x /∈ FV (M)

The syntax and the reduction rules of λx-calculus are given in Table 1. The
set of terms is denoted by Tλx and they are called λx-terms. In M〈x := N〉,
〈x := N〉 is called an explicit substitution or simply substitution and N is called
the body of the substitution. The notions of free and bound variables are defined
as usual, with an additional clause that the variable x in M〈x := N〉 binds the
free occurrences of x in M . The set of free variables of a λx-term M is denoted
by FV (M). The symbol ≡ denotes syntactical equality modulo α-conversion.

The notion of λx-reduction is defined by the contextual closures of all reduc-
tion rules in Table 1. We use →λx for one-step reduction, +→λx for its transitive
closure, and ∗→λx for its reflexive transitive closure. The set of λx-terms that are
strongly normalizing with respect to λx-reduction is denoted by SN λx. These
kinds of notations are also used for the notions of other reductions introduced
in this paper.

The subcalculus of λx without the rule (Beta) is denoted by x. This subcal-
culus has the following properties [3].

Proposition 1. The subcalculus x is strongly normalizing and confluent.

Proof. Strong normalization is shown by defining a map h : Tλx −→ N which
decreases on x-reduction; define

h(x) =def 1 h(MN) =def h(M) + h(N) + 1
h(λx.N) =def h(N) + 1 h(M〈x := N〉) =def h(M)× (h(N) + 1)

and observe that if M →x N then h(M) > h(N). To prove confluence, it is now
sufficient to show local confluence, which is easy. 	


As a result, we can define the unique x-normal form of each λx-term.

Definition 1. The unique x-normal form of a λx-term M is denoted by x(M).

The usual λ-terms are the λx-terms that do not contain explicit substitutions. In
this paper they are called pure λ-terms. The β-rule on pure λ-terms is stated as
(λx.M)N →β M [N/x] whereM [N/x] represents meta-substitution. The relation
between pure λ-terms and x-normal forms is as follows.
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Proposition 2. M is a pure λ-term if and only if M is in x-normal form.

Proof. The left-to-right implication is straightforward. We prove the converse by
induction on the structure of M . Suppose that M is in x-normal form. Then by
the induction hypothesis, all subterms of M are pure λ-terms. Now, if M is not
a pure λ-term, then M is of the form P 〈x := Q〉 where P,Q are pure λ-terms.
In this case, M is an x-redex, which is a contradiction. 	


The next proposition shows that the subcalculus x correctly simulates meta-
substitution on pure λ-terms.

Proposition 3. Let M,N be pure λ-terms. Then M〈x := N〉 ∗→x M [N/x].

Proof. By induction on the structure of M . 	


The next lemma shows that λx-reduction simulates β-reduction.

Lemma 1. Let M,N be pure λ-terms. If M →β N then M
+→λx N .

Proof. By induction on the reduction relation →β . We consider the case where
M ≡ (λx.P )Q →β P [Q/x] ≡ N . Then use →Beta to create P 〈x := Q〉, and use
Proposition 3 to reach P [Q/x]. 	


Bloo and Geuvers [4] proved the following theorem to show that λx-calculus
satisfies the PSN property. Their method appeals to recursive path ordering [8]
and a first-order encoding of λx-terms. We use the theorem to prove one direction
in characterizing strongly normalizing λx-terms by means of intersection types.

Definition 2 (Bounded terms). The set of bounded terms, denoted λx<∞,
is defined by λx<∞ =def {M | for every subterm N of M , x(N) ∈ SN β}.

Theorem 1 ([4]). If M ∈ λx<∞ then M ∈ SNλx.

3 Characterization of Strongly Normalizing λx-Terms

In this section we show that the strongly normalizing λx-terms are characterized
by typability in an intersection type assignment system given in [16]. To prove
that the typable terms are strongly normalizing, we use Theorem 1, subject
reduction (Theorem 2), and the result in [19] for ordinary λ-calculus and inter-
section types. (Some of the proofs of lemmas are taken from [16].) To prove the
other direction, we make an inductive argument together with the preservation
of types under a certain x-expansion.

First, the set of types is defined by the grammar: σ ::= ϕ | σ → σ | σ ∩ σ
where ϕ ranges over a denumerable set of type atoms. We use letters σ, τ, ρ, . . .
for arbitrary types. The type assignment system λx∩ is defined by the rules in
Table 2. A typing context is defined as a finite set of pairs {x1 : σ1, . . . , xn : σn}
where the variables are pairwise distinct. The typing context Γ, x : σ denotes
the union Γ ∪ {x : σ} where x /∈ Γ (x /∈ Γ means that x does not appear in Γ ).
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Table 2. The type assignment system λx∩

Γ, x : σ � x : σ
(Ax) Γ � M : σ → τ Γ � N : σ

Γ � MN : τ
(→ E )

Γ, x : σ � M : τ

Γ � λx.M : σ → τ
(→ I ) Γ � M : σ Γ � M : τ

Γ � M : σ ∩ τ
(∩ I )

Γ � M : σ1 ∩ σ2

Γ � M : σi
(∩E )

where i ∈ {1, 2}

Γ � N : σ Γ, x : σ � M : τ

Γ � M〈x := N〉 : τ
(Cut) Δ � N : σ Γ � M : τ

Γ � M〈x := N〉 : τ
(K-cut)

where x /∈ Γ

We write Γ ) M : σ if there exists a derivation in λx∩ that has this judgement
as its conclusion.

The original intersection type assignment system for λx in [9] does not have
the rule (K-cut) and is not enough to type all strongly normalizing terms. For
example, the λx-term z〈y := xx〉〈x := λa.aa〉 is strongly normalizing but not
typable in the system of [9]. For more discussions, see [16, p. 29].

The system λx∩ has some unusual features caused by the rule (K-cut). For
instance, x does not necessarily appear in Γ of Γ ) M : τ even if x ∈ FV (M).
Nevertheless, we can appropriately rename variables with careful treatment.

Lemma 2. 1. If Γ )M : τ , y /∈ Γ and y /∈ FV (M) then Γ [y/x] )M [y/x] : τ .
2. If Γ )M : τ and x /∈ Γ then Γ, x : σ )M : τ .
3. If Γ, x : σ )M : τ and x /∈ FV (M) then Γ )M : τ .

Proof. By induction on the structure of derivations. 	


Since terms typed in an intersection type system do not in general reflect the
structure of their typing derivations, a Generation Lemma is necessary for prov-
ing the subject reduction and expansion properties. Below we give a precise
statement of Generation Lemma for the case of λx∩. To do so we first define a
pre-ordering on types.

Definition 3. The relation  on types is defined by the following axioms and
rules:

1. σ  σ 3. σ  τ, τ  ρ ⇒ σ  ρ

2. σ ∩ τ  σ, σ ∩ τ  τ 4. σ  τ, σ  ρ ⇒ σ  τ ∩ ρ

Lemma 3. If Γ )M : σ and σ  τ then Γ )M : τ .

Proof. By induction on the definition of . 	
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Lemma 4. If Γ, x : σ )M : τ and ρ  σ then Γ, x : ρ )M : τ .

Proof. By induction on the derivation of Γ, x : σ )M : τ . 	


In the following, we use n for {1, . . . , n}, and ∩nσi for σ1 ∩ · · · ∩ σn.

Lemma 5. Let ∩mσi  ∩nτj where none of the σi (i ∈ m) and τj (j ∈ n) is an
intersection. Then, for each τj , there exists σi such that σi = τj.

Proof. By induction on the definition of . 	


Now we state a precise form of Generation Lemma for the system λx∩.

Lemma 6. 1. Γ ) x : τ if and only if there exists x : σ ∈ Γ such that σ  τ .
2. Γ )MN : τ if and only if there exist σ1, . . . , σn, τ1, . . . , τn (n � 1) such that
∩nτi  τ and, for all i ∈ n, Γ )M : σi → τi and Γ ) N : σi.

3. Γ ) λx.M : τ if and only if there exist σ1, . . . , σn, ρ1, . . . , ρn (n � 1) such
that ∩n(σi → ρi)  τ and, for all i ∈ n, Γ, x : σi )M : ρi.

4. Γ ) λx.M : σ → τ if and only if Γ, x : σ )M : τ .
5. Γ )M〈x := N〉 : τ if and only if either

(a) there exists σ such that Γ ) N : σ and Γ, x : σ )M : τ , or
(b) Γ )M : τ (x /∈ Γ ) and there exist Δ,σ such that Δ ) N : σ.

Proof. The right-to-left implications immediately follow from the typing rules
and Lemma 3. The converses are proved by induction on the structure of deriva-
tions, except for part 4 which follows from part 3 and Lemma 5. Here we consider
the case in part 5 where the last applied rule in the derivation is (∩ I ):

Γ )M〈x := N〉 : τ1 Γ )M〈x := N〉 : τ2
Γ )M〈x := N〉 : τ1 ∩ τ2

(∩ I )

In this case, by the induction hypothesis, we have the following four possibilities:

(i) there exist σ1, σ2 such that Γ ) N : σ1, Γ, x : σ1 ) M : τ1, Γ ) N : σ2 and
Γ, x : σ2 ) M : τ2. In this case, by Lemma 4, Γ, x : σ1 ∩ σ2 ) M : τ1 and
Γ, x : σ1 ∩ σ2 ) M : τ2, so by the rule (∩ I ), Γ, x : σ1 ∩ σ2 ) M : τ1 ∩ τ2.
On the other hand, by the rule (∩ I ), we have Γ ) N : σ1 ∩ σ2. Hence (a)
holds for σ = σ1 ∩ σ2.

(ii) there exist σ1, Δ, σ2 such that Γ ) N : σ1, Γ, x : σ1 ) M : τ1, Γ ) M : τ2
and Δ ) N : σ2. In this case, by Lemma 2 (2), we have Γ, x : σ1 ) M : τ2,
so by the rule (∩ I ), Γ, x : σ1 )M : τ1 ∩ τ2. Hence (a) holds for σ = σ1.

(iii) there exist Δ,σ1, σ2 such that Γ ) M : τ1, Δ ) N : σ1, Γ ) N : σ2 and
Γ, x : σ2 )M : τ2. This case is proved similarly to the case (ii).

(iv) there exist Δ,σ1, Δ
′, σ2 such that Γ ) M : τ1 (x /∈ Γ ), Δ ) N : σ1,

Γ ) M : τ2 and Δ′ ) N : σ2. In this case, by the rule (∩ I ), we have
Γ )M : τ1 ∩ τ2. Hence (b) holds. 	


The next lemma shows that the root reduction and expansion by the rules (App)
and (Abs) preserve types.
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Lemma 7. 1. Γ ) (MM ′)〈x := N〉 : τ if and only if Γ ) M〈x := N〉M ′〈x :=
N〉 : τ .

2. Γ ) (λy.M)〈x := N〉 : τ if and only if Γ ) λy.M〈x := N〉 : τ (y /∈ FV (N)).

Proof. Here we only show part 1.
(⇒) Let Γ ) (MM ′)〈x := N〉 : τ . Then by Lemma 6 (5), we have two cases:

(i) there exists σ such that Γ ) N : σ and Γ, x : σ ) MM ′ : τ . In this case,
by Lemma 6 (2), there exist ρ1, . . . , ρn, τ1, . . . , τn such that ∩nτi  τ
and, for all i ∈ n, Γ, x : σ ) M : ρi → τi and Γ, x : σ ) M ′ : ρi. Then
by the rule (Cut), for each i ∈ n, Γ ) M〈x := N〉 : ρi → τi and Γ )
M ′〈x := N〉 : ρi, so by the rule (→ E ), Γ )M〈x := N〉M ′〈x := N〉 : τi.
Hence by the rule (∩ I ), Γ ) M〈x := N〉M ′〈x := N〉 : ∩nτi, and by
Lemma 3, we obtain Γ )M〈x := N〉M ′〈x := N〉 : τ .

(ii) Γ ) MM ′ : τ (x /∈ Γ ) and there exist Δ,σ such that Δ ) N : σ. This
case is proved similarly to the case (i), using (K-cut) instead of (Cut).

(⇐) Let Γ ) M〈x := N〉M ′〈x := N〉 : τ . Then by Lemma 6 (2), there exist
σ1, . . . , σn, τ1, . . . , τn such that ∩nτi  τ and, for all i ∈ n, Γ )M〈x := N〉 :
σi → τi and Γ )M ′〈x := N〉 : σi. By Lemma 6 (5), for each i ∈ n, there are
four possibilities:
(i) there exist ρ, ν such that Γ ) N : ρ, Γ, x : ρ )M : σi → τi, Γ ) N : ν and

Γ, x : ν ) M ′ : σi. In this case, by Lemma 4, Γ, x : ρ ∩ ν ) M : σi → τi
and Γ, x : ρ∩ ν )M ′ : σi, so by the rule (→ E ), Γ, x : ρ ∩ ν )MM ′ : τi.
On the other hand, by the rule (∩ I ), we have Γ ) N : ρ ∩ ν. Hence by
the rule (Cut), we get Γ ) (MM ′)〈x := N〉 : τi.

(ii) there exist ρ,Δ, ν such that Γ ) N : ρ, Γ, x : ρ ) M : σi → τi, Γ ) M ′ :
σi and Δ ) N : ν. In this case, by Lemma 2 (2), we have Γ, x : ρ )M ′ :
σi, so by the rule (→ E ), Γ, x : ρ ) MM ′ : τi. Hence by the rule (Cut),
we get Γ ) (MM ′)〈x := N〉 : τi.

(iii) there exist Δ, ν, ρ such that Γ ) M : σi → τi, Δ ) N : ν, Γ ) N : ρ and
Γ, x : ρ ) M ′ : σi. In this case, by Lemma 2 (2), we have Γ, x : ρ ) M :
σi → τi, so by the rule (→ E ), Γ, x : ρ ) MM ′ : τi. Hence by the rule
(Cut), we get Γ ) (MM ′)〈x := N〉 : τi.

(iv) there exist Δ, ν,Δ′, ρ such that Γ ) M : σi → τi (x /∈ Γ ), Δ ) N : ν,
Γ ) M ′ : σi and Δ′ ) N : ρ. In this case, by the rule (→ E ), we have
Γ )MM ′ : τi. Hence by the rule (K-cut), we get Γ ) (MM ′)〈x := N〉 :
τi.

Hence by the rule (∩ I ), we have Γ ) (MM ′)〈x := N〉 : ∩nτi, and by
Lemma 3, we obtain Γ ) (MM ′)〈x := N〉 : τ . 	


Now we are in a position to show that the system λx∩ satisfies the subject
reduction property.

Theorem 2. If M →λx N and Γ )M : τ then Γ ) N : τ .

Proof. By induction on the reduction relation →λx. First we consider the cases
where the reduction is at the root.
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(Beta): Let Γ ) (λx.P )Q : τ . Then by Lemma 6 (2), there exist σ1, . . . , σn,
τ1, . . . , τn such that ∩nτi  τ and, for all i ∈ n, Γ ) λx.P : σi → τi and
Γ ) Q : σi. By Lemma 6 (4), for each i ∈ n, Γ, x : σi ) P : τi, and so
Γ ) P 〈x := Q〉 : τi by the rule (Cut). Hence by the rule (∩ I ) and Lemma 3,
we obtain Γ ) P 〈x := Q〉 : τ .

(App): Let Γ ) (PQ)〈x := R〉 : τ . Then by Lemma 7 (1), we have Γ ) P 〈x :=
R〉Q〈x := R〉 : τ .

(Abs): Let Γ ) (λy.P )〈x := Q〉 : τ . Then by Lemma 7 (2), we have Γ )
λy.P 〈x := Q〉 : τ .

(Var): Let Γ ) x〈x := Q〉 : τ . Then by Lemma 6 (5), either (a) there exists σ
such that Γ ) Q : σ and Γ, x : σ ) x : τ , or (b) Γ ) x : τ (x /∈ Γ ) and there
exist Δ,σ such that Δ ) Q : σ. However, by Lemma 6 (1), (b) is impossible
and we have σ  τ from Γ, x : σ ) x : τ in (a). Hence by Lemma 3, we
obtain Γ ) Q : τ .

(gc): Let Γ ) P 〈x := Q〉 : τ and x /∈ FV (P ). Then by Lemma 6 (5), either (a)
there exists σ such that Γ ) Q : σ and Γ, x : σ ) P : τ , or (b) Γ ) P : τ
(x /∈ Γ ) and there exist Δ,σ such that Δ ) Q : σ. In the case (a), we have
Γ ) P : τ by Lemma 2 (3).

The cases where the reduction is not at the root are immediate by Lemma 6 and
the induction hypothesis. 	


Now we can prove one direction of the characterization theorem of strongly
normalizing λx-terms.

Theorem 3. If M is typable in the system λx∩ then M ∈ SN λx.

Proof. By Theorem 1, it suffices to show that if M is typable in the system λx∩
then M ∈ λx<∞. Let M be typable in λx∩ and N be any subterm of M . Then
N is also typable in λx∩, and by Theorem 2, so is x(N). Since x(N) is a pure
λ-term (Proposition 2), it is typable without using (Cut) and (K-cut). Hence by
the result in [19], we have x(N) ∈ SN β . Thus we obtain M ∈ λx<∞. 	


In [18], a method for deriving strong normalization of typable terms from the
PSN property was formalized, but it does not work for the system λx∩. The
method requires preservation of typability during the lift of the explicit sub-
stitutions into β-redexes. However, the λx-term z〈y := xx〉〈x := λa.aa〉 (the
counter example for the system [9]) is typable in λx∩ while the result of lifting
(λx.(λy.z)(xx))(λa.aa) is not, so that one cannot infer strong normalization of
z〈y := xx〉〈x := λa.aa〉 by that method.

Next we prove the converse of Theorem 3. For this we introduce the notion
of typably decent terms.

Definition 4 (Typably decent terms). A λx-term M is said to be typably
decent if for every substitution 〈x := N〉 occurring in M , N is typable in λx∩.

Lemma 8. If M is typably decent, M →x N and Γ ) N : τ , then Γ )M : τ .

Proof. By induction on the reduction relation →x. First we consider the cases
where the reduction is at the root.



Simple Proofs of Characterizing Strong Normalization 265

(App): Let Γ ) P 〈x := R〉Q〈x := R〉 : τ . Then by Lemma 7 (1), we have
Γ ) (PQ)〈x := R〉 : τ .

(Abs): Let Γ ) λy.P 〈x := Q〉 : τ . Then by Lemma 7 (2), we have Γ )
(λy.P )〈x := Q〉 : τ .

(Var): Let Γ ) Q : τ . Since M ≡ x〈x := Q〉 for a fresh variable x, we have
Γ, x : τ ) x : τ , and so Γ ) x〈x := Q〉 : τ by the rule (Cut).

(gc): Let Γ ) P : τ . Since M ≡ P 〈x := Q〉 for a fresh variable x and M
is typably decent, there exist Δ,σ such that Δ ) Q : σ. Hence we obtain
Γ ) P 〈x := Q〉 : τ by the rule (K-cut).

The cases where the reduction is not at the root are immediate by Lemma 6 and
the induction hypothesis. 	


Lemma 9. If M is typably decent and M →x N , then N is typably decent.

Proof. By induction on the reduction relation→x. The cases where the reduction
is at the root are straightforward, since every substitution body occurring in N
also occurs in M . Let us consider the case M ≡ P 〈x := Q〉 and Q→x Q

′. Since
M is typably decent, Q is typable in λx∩, so by Theorem 2, Q′ is typable in
λx∩. Hence we see that P 〈x := Q′〉 is typably decent. 	


Lemma 10. If M is typably decent, M ∗→x N and Γ ) N : τ , then Γ )M : τ .

Proof. By induction on the length of the reduction steps of M ∗→x N , using
Lemmas 8 and 9. 	


Now we can prove the converse of Theorem 3.

Theorem 4. If M ∈ SN λx then M is typable in the system λx∩.

Proof. By induction on the structure of M . Suppose that M ∈ SN λx. Then for
every substitution 〈x := N〉 occurring in M , N ∈ SN λx, so by the induction
hypothesis, N is typable in λx∩. Hence M is typably decent. On the other hand,
since M ∈ SN λx, we have x(M) ∈ SN λx, so by Lemma 1, x(M) ∈ SN β . Hence
by the result in [19], x(M) is typable in λx∩ (without using (Cut) and (K-cut)).
Therefore by Lemma 10, M is typable in λx∩. 	


4 λx-Calculus

In the remainder of the paper we study an explicit substitution calculus which
we call here λx-calculus. This calculus is to sequent calculus what λx-calculus is
to natural deduction. Simply typed terms of the calculus correspond to proofs in
Herbelin’s sequent calculus [12], which has a stronger connection with λ-calculus
than the usual sequent calculus does; in particular, it relates a unique cut-free
proof to each normal term of the simply typed λ-calculus. The reduction rules
of Herbelin’s original calculus were later extended by Dyckhoff and Urban [11]
to simulate full β-reduction. In the simply typed case, they correspond to cut-
elimination steps in the sequent calculus.
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Table 3. λx-calculus

t, u, v ::= xl | λx.t | tl | t〈x := v〉
l, l′ ::= [] | t :: l | ll′ | l〈x := v〉

(Beta) (λx.t)(u :: l) → t〈x := u〉l

(1a) []l → l

(1b) (u :: l)l′ → u :: (ll′)

(2a) []〈x := v〉 → []

(2b) (u :: l)〈x := v〉 → u〈x := v〉 :: l〈x := v〉

(3a) (xl)l′ → x(ll′)

(3b) (λy.t)[] → λy.t

(4a) (yl)〈x := v〉 → yl〈x := v〉 if y �≡ x

(4b) (xl)〈x := v〉 → vl〈x := v〉
(4c) (λy.t)〈x := v〉 → λy.t〈x := v〉

(5a) (ll′)l′′ → l(l′l′′)

(5b) (ll′)〈x := v〉 → l〈x := v〉l′〈x := v〉
(5c) (tl)l′ → t(ll′)

(5d) (tl)〈x := v〉 → t〈x := v〉l〈x := v〉

Table 3 gives the syntax and the reduction rules of λx-calculus. The syntax
has two kinds of expressions: terms and lists of terms, ranged over by t, u, v and
by l, l′, respectively. The set of terms is denoted by Tλx and the set of lists of
terms by Lλx. Elements of Tλx∪Lλx are called λx-terms and ranged over by a, b.
The notions of free and bound variables are defined as in the case of λx-terms.

To see the relation to ordinary λ-calculus, it is useful to consider a subset of
λx-terms defined by the following grammar:

t, u, v ::= xl | λx.t | (λx.t)(u :: l)
l, l′ ::= [] | t :: l

The λx-terms generated by this grammar are called pure terms. Then compare
the grammar of pure terms with the following inductive characterization of the
set of pure λ-terms:

M,N ::= xM1 . . .Mn | λx.M | (λx.M)NM1 . . .Mn (n � 0)

Note that this certainly generates all pure λ-terms. Now it is easy to see that
there exists one-to-one correspondence between pure λ-terms and pure terms in
Tλx. We denote the bijection from pure λ-terms to pure terms by Ψ . Moreover we
define β-reduction on pure terms in Tλx so that it coincides with β-reduction on
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pure λ-terms under the bijection, i.e., for any pure λ-terms M,M ′, M →β M
′ if

and only if Ψ(M)→β Ψ(M ′). (The β-reduction extends to pure terms in Lλx.)
The notion of λx-reduction is defined by the contextual closures of all reduc-

tion rules in Table 3. Then λx-calculus works as an explicit substitution calculus
for the isomorphic image of λ-calculus. The reduction properties of λx-calculus
are similar to those of λx-calculus. In the following we summarize results on
the subcalculus x (i.e., the calculus without the rule (Beta)) and the relation
between λx-reduction and β-reduction on pure terms. (For details, see [11,15].)

Proposition 4. The subcalculus x is strongly normalizing and confluent.

Definition 5. The unique x-normal form of a λx-term a is denoted by x(a).

Proposition 5. a is a pure term if and only if a is in x-normal form.

Lemma 11. For any pure terms a, b ∈ Tλx ∪ Lλx, if a→β b then a
+→λx b.

Using a similar technique to the one in [4], Dyckhoff and Urban [11] proved
the following theorem. We use this theorem to characterize strongly normalizing
λx-terms by an intersection type assignment system in the next section.

Definition 6 (Bounded terms). The set of bounded terms, denoted λx<∞,
is defined by λx<∞ =def {a | for every subterm b of a, x(b) ∈ SN β}.

Theorem 5 ([11]). If a ∈ λx<∞ then a ∈ SN λx.

5 Characterization of Strongly Normalizing λx-Terms

In this section we introduce a new intersection type assignment system in the
style of sequent calculus. The system is an extension of Herbelin’s type assign-
ment system with simple types in [12]. We show that the strongly normalizing
λx-terms coincide with those typable in the intersection type assignment system
in a similar way to that in Section 3.

First we extend the pre-ordering  to one in the style of [2], which reduces
the difficulty of proving the subject reduction property of our intersection type
assignment system.

Definition 7. The relation  on types is defined by the axioms and rules 1–4
in Definition 3 and the following:

5. (σ → τ) ∩ (σ → ρ)  σ → (τ ∩ ρ) 6. σ′  σ, τ  τ ′ ⇒ σ → τ  σ′ → τ ′

Lemma 12. (σ1 → τ1) ∩ (σ2 → τ2)  (σ1 ∩ σ2)→ (τ1 ∩ τ2).

Lemma 13. If ∩n(μi → νi)  σ → τ then there exist i1, . . . , ik ∈ n such that
σ  μi1 ∩ · · · ∩ μik

and νi1 ∩ · · · ∩ νik
 τ .

Proof. See Lemma 2.4 (ii) of [2]. 	
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Table 4. The type assignment system λx∩

Γ ;σ � [] : σ
(Ax)

Γ, x : σ;σ � l : τ

Γ, x : σ;− � xl : τ
(Der)

Γ, x : σ;− � t : τ

Γ ;− � λx.t : σ → τ
(R →)

Γ ;− � t : σ Γ ; τ � l : ρ

Γ ;σ → τ � t :: l : ρ
(L →)

Γ ;Π � a : σ Γ ;Π � a : τ

Γ ;Π � a : σ ∩ τ
(R ∩)

Γ ;σ � l : τ ρ  σ

Γ ;ρ � l : τ
(L )

Γ ;Π � a : σ σ  τ

Γ ;Π � a : τ
(R )

Γ ;Π � a : σ Γ ;σ � l : τ

Γ ;Π � al : τ
(Cut1)

Γ ;− � v : σ Γ, x : σ;Π � a : τ

Γ ;Π � a〈x := v〉 : τ
(Cut2)

Δ;− � v : σ Γ ;Π � a : τ

Γ ;Π � a〈x := v〉 : τ
(K-cut)

where x /∈ Γ

Table 4 presents the rules of the type assignment system λx∩, which is based
on two kinds of judgements: Γ ;− ) t : τ and Γ ;σ ) l : τ . We use Γ ;Π ) a : τ
to denote both kinds of judgements, with Π being zero or one type. The type σ
in Γ ;σ ) l : τ represents the type of a head variable to be attached to the list l.
In other words, σ is the type of the hole of l, since l can be viewed as a context
with a hole in the position of the head variable (cf. the comparison between pure
terms and pure λ-terms in the previous section). So in the rule (L →), the hole
with type τ in the right premiss is replaced, in the conclusion, by the hole with
type σ → τ applied to the term t which is typed with σ in the left premiss. In
the rule (Cut1), we use the notation al, which is read as the λx-term obtained
by filling the hole of l with a term or another context a.

In the following we show some lemmas on properties of the system λx∩.

Lemma 14. 1. If Γ ;Π ) a : τ , y /∈ Γ and y /∈ FV (a) then Γ [y/x];Π )
a[y/x] : τ .

2. If Γ ;Π ) a : τ and x /∈ Γ then Γ, x : σ;Π ) a : τ .
3. If Γ, x : σ;Π ) a : τ and x /∈ FV (a) then Γ ;Π ) a : τ .

Proof. By induction on the structure of derivations. 	


Lemma 15. If Γ ;σ ) [] : τ then σ  τ .

Proof. By induction on the derivation of Γ ;σ ) [] : τ . 	


Lemma 16. If Γ, x : σ;Π ) a : τ and ρ  σ then Γ, x : ρ;Π ) a : τ .
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Proof. By induction on the derivation of Γ, x : σ;Π ) a : τ . 	


Lemma 17. If Γ ;− ) xl : τ then there exists σ such that x : σ ∈ Γ .

Proof. By induction on the derivation of Γ ;− ) xl : τ . 	


Now we state a precise form of Generation Lemma for the system λx∩.

Lemma 18. 1. Γ, x : σ;− ) xl : τ if and only if Γ, x : σ;σ ) l : τ .
2. Γ ;− ) λx.t : τ if and only if there exist σ1, . . . , σn, ρ1, . . . , ρn (n � 1) such

that ∩n(σi → ρi)  τ and, for all i ∈ n, Γ, x : σi;− ) t : ρi.
3. Γ ;− ) tl : τ if and only if there is σ such that Γ ;− ) t : σ and Γ ;σ ) l : τ .
4. Γ ;− ) t〈x := v〉 : τ if and only if either

(a) there exists σ such that Γ ;− ) v : σ and Γ, x : σ;− ) t : τ , or
(b) Γ ;− ) t : τ (x /∈ Γ ) and there exist Δ,σ such that Δ;− ) v : σ.

5. Γ ; ρ ) t :: l : τ if and only if there exist σ, ν such that ρ  σ → ν, Γ ;− ) t : σ
and Γ ; ν ) l : τ .

6. Γ ; ρ ) ll′ : τ if and only if there is σ such that Γ ; ρ ) l : σ and Γ ;σ ) l′ : τ .
7. Γ ; ρ ) l〈x := v〉 : τ if and only if either

(a) there exists σ such that Γ ;− ) v : σ and Γ, x : σ; ρ ) l : τ , or
(b) Γ ; ρ ) l : τ (x /∈ Γ ) and there exist Δ,σ such that Δ;− ) v : σ.

We are now in a position to show that the system λx∩ satisfies the subject
reduction property.

Theorem 6. If a→λx b and Γ ;Π ) a : τ then Γ ;Π ) b : τ .

Finally we need the following proposition which states that the bijection Ψ pre-
serves the typability of pure λ-terms and pure terms in Tλx.

Proposition 6. For any pure λ-term M , M is typable in λx∩ (without using
(Cut) and (K-cut)) if and only if Ψ(M) is typable in λx∩.

Now we can prove one direction of the characterization theorem of strongly
normalizing λx-terms.

Theorem 7. If a is typable in the system λx∩ then a ∈ SNλx.

Proof. By Theorem 5, it suffices to show that if a is typable in the system λx∩
then a ∈ λx<∞. Let a be typable in λx∩ and b be any subterm of a. Then b is also
typable in λx∩, and by Theorem 6, so is x(b). If x(b) ∈ Tλx then by Proposition 6,
Ψ−1(x(b)) is typable, and so Ψ−1(x(b)) ∈ SN β by the result in [19]. Hence by
the definition of β-reduction on pure terms, we have x(b) ∈ SN β . If x(b) ∈ Lλx
then each element u ∈ Tλx of the list x(b) must be reduced independently, and
so x(b) ∈ SN β . Thus we obtain a ∈ λx<∞. 	


The above theorem extends the results of [11,15] where strong normalization is
proved for λx-terms typed with simple types. Our system λx∩ is, in fact, able
to type all strongly normalizing λx-terms. To show that, we introduce again the
notion of typably decent terms.
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Definition 8 (Typably decent terms). A λx-term a is said to be typably
decent if for every substitution 〈x := v〉 occurring in a, v is typable in λx∩.

Lemma 19. If a is typably decent, a→x b and Γ ;Π ) b : τ , then Γ ;Π ) a : τ .

Lemma 20. If a is typably decent and a→x b, then b is typably decent.

Proof. Similar to the proof of Lemma 9. 	


Lemma 21. If a is typably decent, a ∗→x b and Γ ;Π ) b : τ , then Γ ;Π ) a : τ .

Proof. By induction on the length of the reduction steps of a ∗→x b, using Lem-
mas 19 and 20. 	


Now we can prove the converse of Theorem 7.

Theorem 8. If a ∈ SNλx then a is typable in the system λx∩.

Proof. By induction on the structure of a. Suppose that a ∈ SN λx. Then for
every substitution 〈x := v〉 occurring in a, v ∈ SN λx, so by the induction
hypothesis, v is typable in λx∩. Hence a is typably decent. On the other hand,
since a ∈ SNλx, we have x(a) ∈ SN λx, so by Lemma 11, x(a) ∈ SN β .

If x(a) ∈ Tλx then by the definition of β-reduction on pure terms, we have
Ψ−1(x(a)) ∈ SN β , so by the result in [19], Ψ−1(x(a)) is typable in λx∩ (with-
out using (Cut) and (K-cut)). Hence by Proposition 6, x(a) is typable in λx∩.
Therefore by Lemma 21, a is typable in λx∩.

If x(a) ∈ Lλx then for any variable y, yx(a) is a pure term in Tλx. Since
x(a) ∈ SN β , we have yx(a) ∈ SN β , so by the above argument, yx(a) is typable
in λx∩. Hence x(a) is typable in λx∩, and by Lemma 21, a is typable in λx∩. 	


6 Conclusion

In this paper, we presented a method for lifting to explicit substitution calculi
characterizations of the strongly normalizing terms of λ-calculus by means of
intersection type systems. In the first half of the paper, we gave a simple proof
of characterizing the strongly normalizing terms of λx-calculus by an intersec-
tion type system in [16]. In the latter half of the paper, we characterized the
strongly normalizing terms of the explicit substitution calculus of [11] by a new
intersection type system based on sequent calculus.

A challenging problem is to characterize the strongly normalizing terms of
λμμ̃-calculus [7] with explicit substitutions explored in [18]. For λμμ̃-calculus
without explicit substitutions, Dougherty et al. [10] studied characterization of
the strongly normalizing terms, using intersection and union types. For hav-
ing the subject reduction property, they imposed some restrictions on types of
variables, whereas we introduced subtyping rules with a (semantically justified)
pre-ordering. Another direction for further work is to extend our technique to
explicit substitution calculi with composition and/or equations like the calculus
in [13].
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Proving Termination of Rewrite Systems Using

Bounds
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Austria

Abstract. The use of automata techniques to prove the termination of
string rewrite systems and left-linear term rewrite systems is advocated
by Geser et al. in a recent sequence of papers. We extend their work to
non-left-linear rewrite systems. The key to this extension is the intro-
duction of so-called raise rules and the use of tree automata that are not
quite deterministic. Furthermore, we present negative solutions to two
open problems related to string rewrite systems.

1 Introduction

Using automata techniques is a relatively new and elegant approach for automat-
ically proving the termination of rewrite systems. Initially proposed for string
rewriting by Geser, Hofbauer, and Waldmann [7], the method has recently been
extended to left-linear term rewrite systems [10]. Variations and improvements
are discussed in [5,8,9]. The fact that the method has been implemented in sev-
eral different termination provers ([4,12,16,17]) is a clear witness of the success
of the approach.

In this paper we look at two extremes. On the one hand, we present a nega-
tive solution to the problem whether a given string rewrite system can be proved
terminating by the method if no a priori bound is given. A simple reduction from
the undecidable termination problem for string rewrite systems does the trick.
We further show that failure of the method is not completely characterized by the
presence of a so-called witnessing set. Both results settle open problems in [7].

On the other hand, we extend the method to term rewrite systems contain-
ing rules that are not left-linear. This turns out to be surprisingly challenging.
First of all, the theory on which the method is based does not work without fur-
ther ado for non-left-linear rewrite systems. So-called raise rules are introduced
to solve this issue. Second, the usual approach of using deterministic tree au-
tomata for dealing with non-left-linear rewrite rules appears to be incompatible
with the method. We introduce quasi-deterministic tree automata to overcome
this problem. Finally, the raise rules need special care to enable the automata
construction to terminate.

The remainder of the paper is organized as follows. In the next section we
recall basic definitions concerning the automata theory approach to proving ter-
mination of rewrite systems. In Section 3 we introduce raise rules to overcome the
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problem caused by non-left-linear rules. Quasi-deterministic tree automata are
introduced in Section 4. In Sections 5 and 6 it is explained how these automata
are used to infer termination. Like in the linear case, the power of the method is
increased by considering right-hand sides of forward closures. This is explained
in Section 7. We present experimental data in Section 8. In Section 9 we present
our negative solutions to the open problems for string rewrite systems.

2 Preliminaries

We assume familiarity with term rewriting [1] and tree automata [2]. General
knowledge of the match-bound technique [7,10] will be helpful. Below we recall
important definitions and results from the latter paper.

A TRS R over a signature F is called locally terminating if every restriction
of R to a finite signature G ⊆ F is terminating. Given a set L ⊆ T (F) of ground
terms, we denote the set {t ∈ T (F) | s→∗

R t for some s ∈ L} of descendants
of L by →∗

R(L). Given a set N ⊆ N of natural numbers, the signature F × N
is denoted by FN . Here function symbols (f, n) with f ∈ F and n ∈ N have
the same arity as f and are written as fn. Let F be a signature. The mappings
liftc : F → FN, base : FN → F , and height : FN → N are defined as follows:

liftc(f) = fc base(fi) = f height(fi) = i

for all f ∈ F and c, i ∈ N. They are extended to terms and to set of terms in
the obvious way.

Let t be a term in T (F ,V) and V ⊆ Var(t) a set of variables. A position
p ∈ FPos(t) is a roof position in t for V if V ⊆ Var(t|p). The set of all roof
positions in t for V is denoted by RPosV (t). Let l and r be two terms in T (F ,V).
The mappings top, roof, and match are defined as follows:

top(l, r) = {ε} roof(l, r) = RPosVar(r)(l) match(l, r) = FPos(l)

Let R be a TRS over the signature F and e a function that maps every rewrite
rule l → r ∈ R to a nonempty subset of FPos(l). The TRS e(R) over the
signature FN consists of all rewrite rules l′ → liftc(r) for which there exists a
rule l→ r ∈ R such that base(l′) = l and c = 1+min{height(l′(p)) | p ∈ e(l, r)}.
Let c ∈ N. The restriction of e(R) to the signature F{0,...,c} is denoted by ec(R).
Let e ∈ {top, roof,match} and L a set of terms. The TRS R is called e-bounded
for L if there exists a c ∈ N such that the maximum height of function symbols
occurring in terms in →∗

e(R)(lift0(L)) is at most c. If we want to precise the
bound c, we say that R is e-bounded for L by c. In the following we do not
mention L if we have the set of all ground terms in mind.

Lemma 1 ([10]). Let R be a TRS. The TRSs top(R) and roof(R) are locally
terminating. If R is right-linear then match(R) is locally terminating. 	
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3 Raise-Bounds

The following example shows that e-bounded TRSs need not be terminating.

Example 2. Consider the non-terminating TRS R = {f(x, x) → f(a, x)}. The
TRSs match(R), roof(R), and top(R) coincide and consist of the rules

fi(x, x) → fi+1(ai+1, x)

for all i � 0. It is not difficult to see that with these rules we can never reach
height 2 starting from a term in T ({a0, f0}). Hence R is e-bounded by 1 for all
e ∈ {top, roof,match}.

The problem is that even though every single R-step can be simulated by an
e(R)-step, this does not hold for consecutive R-steps. We have f(a, a) →R
f(a, a) →R f(a, a) but after the step f0(a0, a0) →e(R) f1(a1, a0) we are stuck
because a0 �= a1.

Definition 3. Let F be a signature. The TRS raise(F) over the signature FN

consists of all rules

fi(x1, . . . , xn)→ fi+1(x1, . . . , xn)

with f an n-ary function symbol in F , i ∈ N, and x1, . . . , xn pairwise different
variables. The restriction of raise(F) to the signature F{0,...,c} is denoted by
raisec(F). For terms s, t ∈ T (FN,V) we write s  t if s→∗

raise(F) t and s ↑ t for
the least term u with s  u and t  u. The latter notion is extended to ↑ S for
finite nonempty sets S ⊂ T (FN,V) in the obvious way.

The following result corresponds to Lemma 1. The right-linearity condition is
weakened to non-duplication in order to cover more non-left-linear TRSs. (A
TRS is duplicating if there exist a rewrite rule l → r and a variable x that
occurs more often in r than in l.)

Lemma 4. Let R be a TRS over a signature F . The TRSs top(R) ∪ raise(F)
and roof(R) ∪ raise(F) are locally terminating. If R is non-duplicating then
match(R) ∪ raise(F) is locally terminating.

Proof. Straightforward adaptations of the proofs of Lemmata 16 and 17 in [10].
	


An immediate consequence of the next lemma states that every derivation in R
can be simulated using the rules in e(R) and raise(F).

Lemma 5. Let R be a TRS over a signature F . If s →R t then for all s′ with
base(s′) = s there exists a term t′ such that base(t′) = t and s′ →+

e(R)∪raise(F) t
′.

Proof. Straightforward. 	


However, since raise(F) is non-terminating, in order to use e(R) ∪ raise(F) to
infer termination of R, we have to restrict the rules of raise(F) to those that
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are really needed to simulate derivations in R. We do this by defining a new
relation �−→e(R) in which the necessary raise steps are built in. The idea is that
s

�−→e(R) t if t can be obtained from s by doing the minimum number of raise
steps to ensure the applicability of a non-left-linear rewrite rule in e(R).

Definition 6. Let R be a TRS over a signature F . We define the relation
�−→e(R) on T (FN,V) as follows: s �−→e(R) t if and only if there exist a rewrite
rule l → r ∈ e(R), a position p ∈ Pos(s), a context C, and terms s1, . . . , sn

such that l = C[x1, . . . , xn] with all variables displayed, s|p = C[s1, . . . , sn],
base(si) = base(sj) whenever xi = xj , and t = s[rθ]p. Here the substitution θ is
defined as follows:

θ(x) =

{
↑ {si | xi = x} if x ∈ {x1, . . . , xn}
x otherwise

Note that �−→e(R) =→e(R) for left-linear TRSs R.

Definition 7. The TRS R is called e-raise-bounded for L if there exists a
c ∈ N such that the maximum height of function symbols occurring in terms
in �−→∗

e(R)(lift0(L)) is at most c.

For left-linear TRSs, e-raise-boundedness coincides with e-boundedness.

Lemma 8. Let R be a TRS over a signature F . If s→R t then for all terms s′

with base(s′) = s there exists a term t′ such that base(t′) = t and s′ �−→e(R) t
′.

Proof. Straightforward. 	


Theorem 9. Let R be a TRS over a signature F and let L ⊆ T (F). If R is
top-raise-bounded or roof-raise-bounded for L then R is terminating on L. If R
is non-duplicating and match-raise-bounded for L then R is terminating on L.

Proof. Assume to the contrary that there exists an infinite sequence t1 →R
t2 →R · · · with t1 ∈ L. With help of Lemma 8 this sequence is lifted to an
infinite �−→e(R) sequence starting from lift0(t1). Since R is e-raise-bounded for
L, all terms in this latter sequence belong to T (F{0,...,c}) for some c ∈ N. Hence
the employed rules must come from ec(R) ∪ raisec(F) and therefore ec(R) ∪
raisec(F) is non-terminating. This is impossible because e(R)∪raise(F) is locally
terminating according to Lemma 4. 	


We conclude this section with an example.

Example 10. Consider the TRS R consisting of the rules f(x, x) → f(a, g(a, x))
and g(x, x) → b over the signature F = {a, f, g}. With the rules

f0(x, x) → f1(a1, g1(a1, x)) g0(x, x) → b1 g1(x, x) → b2

of match(R), arbitrary derivations in R can be simulated using the relation
�−→match(R). For instance,
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f(f(a, a), f(a, b)) →R f(f(a, g(a, a)), f(a, b))
→R f(f(a, b), f(a, b))
→R f(a, g(a, f(a, b)))

is turned into

f0(f0(a0, a0), f0(a0, b0))
�−→match(R) f0(f1(a1, g1(a1, a0)), f0(a0, b0))
�−→match(R) f0(f1(a1, b2), f0(a0, b0))
�−→match(R) f1(a1, g1(a1, f1(a1, b2)))

Here the following raise rules are used implicitly to enable the application of the
non-left-linear rules in match(R):

a0 → a1 b1 → b2

b0 → b1 f0(x, y)→ f1(x, y)

It can be shown that R is match-raise-bounded by 2.

4 Quasi-deterministic Tree Automata

A common approach to handle non-linearity with automata techniques is to
consider deterministic tree automata (cf. [2,14,15]). The weaker property defined
below turns out to be more suitable for our purposes. To simplify the presentation
we consider tree automata without ε-transitions.

Definition 11. Let A = (F , Q,Qf , Δ) be a tree automaton. For a left-hand side
l ∈ lhs(Δ) of a transition, we denote the set {q | l → q ∈ Δ} of possible right-
hand sides by Q(l). We call A quasi-deterministic if for every l ∈ lhs(Δ) there
exists a state p ∈ Q(l) such that for all transitions f(q1, . . . , qn) → q ∈ Δ and
i ∈ {1, . . . , n} with qi ∈ Q(l), the transition f(q1, . . . , qi−1, p, qi+1, . . . , qn) → q
belongs to Δ. Moreover, we require that p ∈ Qf whenever Q(l) contains a final
state.

Deterministic tree automata are trivially quasi-deterministic because Q(l) is a
singleton set for every left-hand side l ∈ lhs(Δ). In general, Q(l) may contain
more than one state that satisfies the above property. In the following we assume
that there is a unique designated state, which we denote by pl. The set of all
designated states is denoted by Qd and the restriction of Δ to transition rules
l→ q that satisfy q = pl is denoted by Δd.

Lemma 12. Let A = (F , Q,Qf , Δ) be a quasi-deterministic tree automaton. If
t→∗

Δ q then t→∗
Δd
· →Δ q for all terms t ∈ T (F) and states q ∈ Q.

Proof. We use induction on t. If t is a constant the claim holds trivially. Let t =
f(t1, . . . , tn). The sequence from t to q can be written as t→∗

Δ f(q1, . . . , qn)→Δ

q. The induction hypothesis yields for every i ∈ {1, . . . , n} a left-hand side li ∈
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lhs(Δ) such that ti →∗
Δd

li →Δ qi. Since A is quasi-deterministic, li →Δd
pli and

qi ∈ Q(li). According to the definition of pl1 the transition f(pl1 , q2, . . . , qn) → q
belongs to Δ. Repeating this argument n − 1 times yields that the transition
f(pl1 , . . . , pln) → q belongs to Δ. Thus t→∗

Δd
f(pl1 , . . . , pln)→Δ q. 	


Lemma 13. Let A = (F , Q,Qf , Δ) be a quasi-deterministic tree automaton.
The tree automaton Ad = (F , Q,Qf , Δd) is deterministic and L(A) = L(Ad).

Proof. From the definition it is obvious that Ad is deterministic. The inclusion
L(Ad) ⊆ L(A) is trivial. In order to show the reverse inclusion, we prove the
following claim for all terms t ∈ T (F) and states q ∈ Q:

If t→∗
Δ q then t→∗

Δd
pl and q ∈ Q(l) for some l ∈ lhs(Δ).

We use induction on t. If t is a constant then t → q ∈ Δ. Hence t ∈ lhs(Δ),
q ∈ Q(t), and t → pt ∈ Δd. Let t = f(t1, . . . , tn). The sequence from t to q can
be written as t→∗

Δ f(q1, . . . , qn)→Δ q. From the previous lemma we know that
t→∗

Δd
f(p1, . . . , pn) →Δ q. Let l = f(p1, . . . , pn). We have l ∈ lhs(Δ), q ∈ Q(l),

and l→ pl ∈ Δd. It follows that t→∗
Δd

pl. This completes the proof of the claim.
Now let t ∈ L(A). So t →∗

Δ qf for some qf ∈ Qf . From the claim we obtain
t →∗

Δd
pl and qf ∈ Q(l) for some l ∈ lhs(Δ). Since Q(l) contains a final state,

we have pl ∈ Qf by definition. Hence t ∈ L(Ad). 	

A simple procedure to turn an arbitrary tree automaton A = (F , Q,Qf , Δ) into
an equivalent quasi-deterministic one without losing any transitions of Δ is the
following:

1. Use the subset construction to transformA into a deterministic tree automa-
ton A′ = (F , Q′, Q′

f , Δ
′).

2. Take the union of A and A′ after identifying states {q} ∈ Q′ with q ∈ Q.

Let us illustrate this on a small example.

Example 14. The tree automaton A = (F , Q,Qf , Δ) with F = {a, f}, Q =
{1, 2},Qf = {1}, and Δ = {a→ 1, a→ 2, f(1, 2)→ 1} is not quasi-deterministic;
we have Q(a) = {1, 2} but if we take pa = 1 then the transition f(1, 1) → 1 is
missing and if we take pa = 2 then the transition f(2, 2) → 1 is missing. The
subset construction produces A′ = (F , Q′, Q′

f , Δ
′) with Q′ = {{1}, {2}, {1, 2}},

Q′
f = {{1}, {1, 2}}, and Δ′ consisting of the following transitions:

a → {1, 2} f({1}, {2})→ {1} f({1, 2}, {2})→ {1}
f({1}, {1, 2})→ {1} f({1, 2}, {1, 2})→ {1}

Combining A and A′ after identifying {1} with 1 and {2} with 2 produces the
following transitions:

a → {1, 2} f(1, 2)→ 1 f({1, 2}, 2)→ 1
a → 1 f(1, {1, 2})→ 1 f({1, 2}, {1, 2})→ 1
a → 2

The final states are 1 and {1, 2}, and pa = {1, 2}.
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5 Compatibility

The reason why we prefer quasi-deterministic tree automata over deterministic
automata is the importance of preserving existing transitions when constructing
an automaton that satisfies the compatibility condition defined below. This will
be illustrated in Example 17.

Definition 15. Let R be a TRS, L a language, and A = (F , Q,Qf , Δ) a quasi-
deterministic tree automaton. We say that A is compatible with R and L if L ⊆
L(A) and for each rewrite rule l→ r ∈ R and state substitution σ : Var(l)→ Qd

such that lσ →∗
Δd

q it holds that rσ →∗
Δ q.

Theorem 16. Let R be a TRS and L a language. Let A be a quasi-deterministic
tree automaton. If A is compatible with R and L then →∗

R(L) ⊆ L(A).

Proof. Let s and t be two ground terms such that s ∈ L(A) and s→R t. We show
that t ∈ L(A). The desired result then follows by induction. There exist a rewrite
rule l → r ∈ R, a position p ∈ Pos(s), and a ground substitution σ such that
s = s[lσ]p →R s[rσ]p = t. Let A = (F , Q,Qf , Δ). Because s ∈ L(A) = L(Ad),
there exist states q ∈ Q and qf ∈ Qf such that s = s[lσ]p →∗

Δd
s[q]p →∗

Δd

qf . Because Ad is deterministic by Lemma 13, different occurrences of xσ in
lσ are reduced to the same state in the sequence from s[lσ]p to s[q]p. Hence
there exists a mapping τ : Var(l) → Qd such that lσ →∗

Δd
lτ →∗

Δd
q. We have

rσ →∗
Δd

rτ →∗
Δd
· →Δ q by the definition of compatibility and Lemma 12. Hence

t = s[rσ]p →∗
Δd
· →Δ s[q]p →∗

Δd
qf and thus t ∈ L(A). 	


Since the set �−→∗
e(R)(lift0(L)) need not be regular, even for left-linear R and reg-

ular L [10], we cannot hope to give an exact automaton construction. The general
idea [6,10] is to look for violations of the compatibility requirement: lσ →∗

Δd
q

and not rσ →∗
Δ q for some rewrite rule l→ r, state substitution σ : Var(l)→ Q,

and state q. Then we add new states and transitions to the current automaton
to ensure rσ →∗

Δ q. There are several ways to do this, ranging from establishing
a completely new path rσ →∗

Δ q to adding as few as possible new transitions by
reusing transitions from the current automaton. After rσ →∗

Δ q has been estab-
lished, we look for further violations of compatibility. This process is repeated
until a compatible automaton is obtained, which may never happen if new states
are kept being added.

The following example explains why we prefer quasi-deterministic automata
over deterministic ones.

Example 17. Consider the TRS R = {f(x, x) → f(a, b), c → a, c → b} over the
signature F = {a, b, c, f} and the initial tree automaton A = (F{0}, {1}, {1}, Δ)
with the following transitions:

a0 → 1 b0 → 1 c0 → 1 f0(1, 1)→ 1

Suppose we look for a deterministic automaton that is compatible with match(R)
and lift0(T (F)). Note that L(A) = lift0(T (F)). Since c0 →match(R) a1 and
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c0 → 1, we add the transition a1 → 1. Similarly, c0 →match(R) b1 gives rise
to the transition b1 → 1. Next we consider f0(1, 1) →match(R) f1(a1, b1) with
f0(1, 1)→ 1. In order to ensure f1(a1, b1)→∗ 1 we may reuse one or both of the
transitions a1 → 1 and b1 → 1. Let us consider the various alternatives.

– If we reuse both transitions then we only need to add the transition f1(1, 1)→
1 in order to obtain f1(a1, b1) →∗ 1. This gives rise to a further violation of
compatibility, f1(1, 1)→match(R) f2(a2, b2) with f1(1, 1)→ 1, which is similar
to the previous one.

– Suppose we reuse a1 → 1 but not b1 → 1. That means we have to add a new
state 2 and transitions b1 → 2 and f1(1, 2) → 1 resulting in the following
transitions:

a0 → 1 b0 → 1 c0 → 1 f0(1, 1)→ 1
a1 → 1 b1 → 1 b1 → 2 f1(1, 2)→ 1

Making these transitions deterministic produces an automaton that includes
c0 → 1 and b1 → {1, 2}. Because the transition b1 → 1 was removed, the
second violation of compatibility that we considered, c0 →match(R) b1 and
c0 → 1, reappears. So we have to add b1 → 1 again, but each time we make
the automaton deterministic this transition is deleted.

– The remaining options would be to choose a fresh state for a1 or for both a1

and b1. However they all give rise to the same situation.

So by using deterministic automata we will never achieve compatibility. The
problem is clearly the removal of transitions that were added in an earlier stage
to ensure compatibility and that is precisely the reason why we introduced quasi-
deterministic automata. Starting from the transitions in the last case above, the
following quasi-deterministic tree automaton is constructed:

a0 → 1 b0 → 1 c0 → 1 f0(1, 1)→ 1
a1 → 1 | 2 | 4 b1 → 1 | 3 | 5 f1(2, 3)→ 1

f0(1, 4)→ 1 f0(1, 5)→ 1 f0(4, 5)→ 1 f0(4, 4)→ 1
f0(4, 1)→ 1 f0(5, 1)→ 1 f0(5, 4)→ 1 f0(5, 5)→ 1
f1(2, 5)→ 1 f1(4, 3)→ 1 f1(4, 5)→ 1

Here 4 (abbreviating {1, 2}) is the designated state for a1 and 5 (abbreviating
{1, 3}) is the designated state for b1. The transitions in the last three rows
are added to satisfy the condition of Definition 11. The resulting automaton is
compatible with match(R).

To conclude match-raise-boundedness in the previous example, it is not enough
to construct a tree automaton that is compatible with match(R). We also have
to ensure that the automaton is closed under the implicit raise steps caused by
�−→match(R). How this can be done is explained in the next section.
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6 Raise-Consistency

A naive (and sound) approach to guarantee that the implicit raise rules in the
definition of �−→e(R) are taken into account would be to require compatibility
with all raise rules fi(x1, . . . , xn) → fi+1(x1, . . . , xn) for which fi+1 appears in
the current set of transitions. The following example shows that this approach
may over-approximate the essential raise steps too much.

Example 18. Continuing the previous example, we have f0(1, 1)→raise(F) f1(1, 1)
with f0(1, 1)→ 1. Compatibility requires the addition of the transition f1(1, 1)→
1, causing a new compatibility violation f1(1, 1)→match(R) f2(a2, b2) with f1(1, 1)
→ 1. After establishing the path f2(a2, b2)→∗ 1, f2 will make its appearance and
thus we have to consider f1(1, 1) →raise(F) f2(1, 1) with f1(1, 1) → 1. This yields
the transition f2(1, 1)→ 1. Clearly, this process will not terminate.

To avoid the behaviour in the previous example, we now outline a better way
to handle the raise rules. Let fi(q1, . . . , qn) → q be a transition that we add
to the current set Δ of transitions, either to resolve a compatibility viola-
tion or to satisfy the quasi-determinism condition. Then, for every transition
fj(q1, . . . , qn) → p ∈ Δ with j < i we add fi(q1, . . . , qn) → p to Δ and for
every transition fj(q1, . . . , qn) → p ∈ Δ with j > i we add fj(q1, . . . , qn) → q to
Δ. The automata resulting from this implicit handling of raise rules satisfy the
property defined below.

Definition 19. Let A = (FN , Q,Qf , Δ) be a tree automaton with N a finite
subset of N. We say that A is raise-consistent if for every pair of transitions
fi(q1, . . . , qn) → q and fj(q1, . . . , qn) → p in Δ with i < j, the transition
fj(q1, . . . , qn)→ q belongs to Δ.

Lemma 20. Let A = (FN , Q,Qf , Δ) be a quasi-deterministic tree automaton.
If A is raise-consistent then for all terms s, t ∈ T (FN ) and states p, q ∈ Q with
base(s) = base(t), s →∗

Δ p, and t →∗
Δ q there exists a left-hand side l ∈ lhs(Δ)

such that s ↑ t→∗
Δd

l and p, q ∈ Q(l).

Proof. We prove the lemma by induction on s and t. If s and t are constants
then s ↑ t ∈ {s, t}. If s  t then s ↑ t = t and p ∈ Q(t) by the definition of
raise-consistency. If t  s then s ↑ t = s and q ∈ Q(s). So in both cases we can
take l = s ↑ t. For the induction step suppose that s = fj(s1, . . . , sn) and t =
fk(t1, . . . , tn) with s →∗

Δ fj(p1, . . . , pn) →Δ p and t →∗
Δ fk(q1, . . . , qn) →Δ q.

The induction hypothesis yields left-hand sides l1, . . . , ln ∈ lhs(Δ) such that si ↑
ti →∗

Δd
li with pi, qi ∈ Q(li) for all i ∈ {1, . . . , n}. Let m = max {j, k}. Clearly

s ↑ t = fm(s1 ↑ t1, . . . , sn ↑ tn). Let l = fm(pl1 , . . . , pln). We have s ↑ t →∗
Δd

fm(l1, . . . , ln) →∗
Δd

l. Because A is quasi-deterministic, fj(pl1 , . . . , pln)→ p and
fk(pl1 , . . . , pln) → q belong to Δ. It follows that l ∈ lhs(Δ). Raise-consistency
yields p, q ∈ Q(l). 	


Theorem 21. Let R be a TRS and L a language. Let A be a quasi-deterministic
and raise-consistent tree automaton. If A is compatible with e(R) and lift0(L)
then R is e-raise-bounded for L.
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Proof. Let F be the signature of R and let A = (FN , Q,Qf , Δ). We have
lift0(L) ⊆ L(A). Let s ∈ L(A) and s

�−→e(R) t. Then there is a term s′ such
that s →∗

raise(F) s′ →e(R) t. We show that s′ ∈ L(A). If l is linear then
s = s′ and we are done. Suppose l is non-linear. To simplify the notation we
assume that l = f(x, x). We may write s = s[f(s1, s2)]p and s′ = s[f(u, u)]p
with base(s1) = base(s2) and u = s1 ↑ s2. Since s ∈ L(A), there exist states
p1, p2, q ∈ Q and qf ∈ Qf such that s →∗

Δ s[f(p1, p2)]p →Δ s[q]p →∗
Δ qf . In

order to conclude s′ ∈ L(A) we show that f(u, u) →∗
Δ q. The previous lemma

yields a left-hand side l ∈ lhs(Δ) such that u→∗
Δd

l and p1, p2 ∈ Q(l). We obtain
f(u, u) →∗

Δd
f(l, l) →∗

Δd
f(pl, pl). Quasi-determinism yields f(pl, pl) → q ∈ Δ

and thus f(u, u)→∗
Δ q as desired. Now that s′ ∈ L(A) is established, we obtain

t ∈ L(A) from the compatibility of A and e(R), as in the proof of Theorem 16.
	


Example 22. Since the resulting quasi-deterministic tree automaton in Exam-
ple 17 is raise-consistent and compatible with match(R) and lift0(T (F)), R is
match-raise-bounded by Theorem 21.

7 Forward Closures

When proving termination of a TRS R that is non-overlapping [11] or right-
linear [3] it is sufficient to restrict attention to the set RFC(R) of right-hand
sides of forward closures. This set is defined as the closure of the right-hand
sides of the rules in R under variable renaming and narrowing. More formally,
RFC(R) is the least extension of rhs(R) such that

– t[r]pσ ∈ RFC(R) whenever t ∈ RFC(R) and there exist a position p ∈
FPos(t) and a fresh variant l → r of a rewrite rule in R with σ a most
general unifier of t|p and l,

– tσ ∈ RFC(R) whenever t ∈ RFC(R) and σ is a variable renaming.

Dershowitz [3] obtained the following result.

Theorem 23. A right-linear TRS R is terminating if and only if R is termi-
nating on RFC(R). 	


The following concept has been introduced in [10]. It enables the simulation of
narrowing in the definition of right-hand sides of forward closures by rewriting.
This makes it possible to use tree automata to compute an approximation of
RFC(R) for linear R.

Definition 24. Let R be a TRS. The TRS R# is defined as the least extension
of R that is closed under the following operation. If l → r ∈ R# and p ∈
FPos(l) \ {ε} then l[#]p → rσ ∈ R#. Here the substitution σ is defined by
σ(x) = # if x ∈ Var(l|p) and σ(x) = x otherwise. The substitution that maps all
variables to # is denoted by σ#. Here # is a fresh function symbol.

The following results are proved in [10].
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Lemma 25. If R is a linear TRS then RFC(R)σ# =→∗
R#

(rhs(R)σ#). 	


Corollary 26. If a linear TRS R is match-bounded for →∗
R#

(rhs(R)σ#) then
R is terminating. 	


In order to obtain a corresponding result for right-linear TRSs, we linearize
left-hand sides of rewrite rules.

Definition 27. Let t be a term. The set of linear terms s with Var(t) ⊆ Var(s)
for which there exists a variable substitution τ : Var(s) \ Var(t) → Var(t) such
that sτ = t is denoted by linear(s). Let R be a TRS. The set of rewrite rules
{l′ → r | l → r ∈ R and l′ ∈ linear(l)} is denoted by linear(R). We write R′

#

for linear(R)#.

Lemma 28. If R is right-linear then RFC(R)σ# ⊆ →∗
R′

#
(rhs(R)σ#).

Proof. We obviously have rhs(R) = rhs(linear(R)). Applying Lemma 25 to
linear(R) yields RFC(linear(R))σ# = →∗

R′
#
(rhs(R)σ#). Hence it is sufficient

to prove the inclusion RFC(R)σ# ⊆ RFC(linear(R))σ#. We omit the straight-
forward details. 	


The following example shows that the reverse inclusion does not hold.

Example 29. For the TRSR = {f(x, x) → f(b, g(x)), a → b} we have RFC(R)σ#

= {f(b, g(#)), b} and →∗
R′

#
(rhs(R)σ#) = {f(b, gi(#)), b, f(b, gi(b)) | i � 1}.

Corollary 30. Let R be a right-linear TRS. If R is match-raise-bounded for
→∗

R′
#
(rhs(R)σ#) then R is terminating.

Proof. Since RFC(R)σ# is a subset of →∗
R′

#
(rhs(R)σ#), R is also match-raise-

bounded for RFC(R)σ#. Theorem 9 yields the termination of R on RFC(R)σ#.
Since rewriting is closed under substitution, R is terminating on RFC(R). From
Theorem 23 we conclude that R is terminating on all terms. 	


We conclude this section by stating a simple criterion that allows us to restrict
the set of terms that have to be considered for termination of TRSs that are
non-duplicating but not necessarily right-linear. The easy proof is omitted. For
right-linear systems the use of forward closures is more powerful.

Lemma 31. Let R be a non-duplicating TRS over a signature F and let G ⊆ F
consist of all function symbols in rhs(R). Then R is terminating if and only if
R is terminating on T (G). 	


8 Experimental Results

The techniques described in the preceding sections are implemented in TTTbox.1

TTTbox is written in OCaml2 and consists of about 5000 lines of code.
1 http://cl-informatik.uibk.ac.at/~mkorp/TTTbox.html
2 http://caml.inria.fr/
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Table 1. 87 non-left-linear TRSs

28 right-linear 59 non-right-linear

RFC

explicit implicit explicit implicit explicit implicit

# successes 8 9 21 21 4 8

average time 3 4 6 6 3421 549

# timeouts 20 19 7 7 55 51

Since quasi-determinisation is expensive, TTTbox collects and resolves all com-
patibility violations with respect to the current automaton before making the au-
tomaton quasi-deterministic. Then new compatibility violations are determined
and the process is repeated. Compatibility violations are resolved by adding new
transitions according to the following strategy, which is a variation of the one
used by Matchbox [16]. To establish a path rσ →∗

Δ q, TTTbox

1. calculates all contextsC[�, . . . ,�],D1[�, . . . ,�], . . . ,Dn[�, . . . ,�] and terms
t1, . . . , tm ∈ T (F , Q) such that C[D1[t1, . . . , ti], . . . , Dn[tj , . . . , tm]] = rσ,
C[q1, . . . , qn] →∗

Δ q and ti →∗
Δ qti for states q1, . . . , qn, qt1 , . . . , qtm ∈ Q,

2. chooses among all possibilities one where the combined size of D1[�, . . . ,�],
. . . , Dn[�, . . . ,�] is minimal,

3. adds new transitions involving new states to achieve D1[qt1 , . . . , qti ] →∗ q1,
. . . , Dn[qtj , . . . , qtm ]→∗ qn.

We report on the experiments we performed with TTTbox on the 87 non-left-
linear TRSs in version 3.2 of the Termination Problem Data Base.3 All tests were
performed on a server equipped with two Intel R© XeonTM processors running at
a CPU rate of 2.40 GHz and 2048 MB of system memory. Our results are sum-
marized in Table 1. We list the number of successful termination attempts, the
average system time needed to prove termination (measured in milliseconds),
and the number of timeouts. For all experiments we used a 60 seconds time
limit. In the left part of the table we deal with right-linear systems and test
for match-raise-boundedness, both with the explicit approach for handling raise
rules described in the first paragraph of Section 6 and the implicit approach
using raise-consistency. The positive effect of forward closures (Corollary 30)
is clearly visible. In the right part of Table 1 we deal with non-right-linear
TRSs. If the TRS under consideration is non-duplicating we test for match-
raise-boundedness; duplicating TRSs are tested for roof-raise-boundedness.

All non-left-linear TRSs in the Termination Problem Data Base that can
be proved terminating with TTTbox can also be proved terminating with other
termination provers. Nevertheless there are non-left-linear TRSs which can cur-
rently only be handled by TTTbox. One such TRS consists of the following rules:

3 http://www.lri.fr/~marche/tpdb
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f(g(x, y)) → g(y, g(f(f(x)), a)) g(c, g(c, x)) → g(e, g(d, x))
g(x, x) → g(a, b) g(d, g(d, x)) → g(c, g(e, x))

g(e, g(e, x)) → g(d, g(c, x))

Using the implicit approach, TTTbox certifies in 0.059 seconds that this TRS
is match-raise-bounded for the set of right-hand sides of forward closures by 2.
It produces a quasi-deterministic and raise-consistent tree automaton that has
47 states and 213 transitions. None of the tools that participated in last year’s
termination competition can prove termination within 300 seconds.

9 Two Results for Match-Bounded String Rewriting

For the class of string rewrite systems (SRSs in the following), the match-bound
technique has some properties which do not hold for the more general case of
(left-linear) term rewriting. One of these is regularity preservingness [7]. The
following result of [7] states that match-boundedness is decidable if the bound c
is fixed.

Theorem 32. The following problem is decidable:

instance: an SRS R, a regular set L, a bound c ∈ N
question: is R match-bounded for L by c?

An efficient and exact algorithm for finding a compatible automaton that solves
the problem of Theorem 32 is described in Endrullis et al. [5] and implemented
in Jambox. When c is not fixed, match-boundedness becomes undecidable. This
settles an open problem in [7].4

Theorem 33. The following problem is undecidable:

instance: an SRS R and a regular set L
question: is R match-bounded for L?

Proof. Let t be an arbitrary string and consider L = {t}. We show that R
is match-bounded for L if and only if t is terminating. Since the termination
problem for SRSs is undecidable [13], the result follows. If R is match-bounded
for L then t is terminating according to [7, Theorem 2]. Otherwise, for each
c ∈ N there exists a string u and a derivation lift0(t) →∗

match(R) u such that u
contains a function symbol of height c. Because the relation→match(R) is finitely
branching, it follows that there must be an infinite match(R)-derivation starting
from lift0(t). Erasing the heights from this derivation produces an infinite R-
derivation from t. Hence t is not terminating. 	


The properties e-boundedness and e-raise-boundedness for e ∈ {match, roof,
top} are likewise undecidable. In order to prove that a given SRS R is not
match-bounded for a given set L, the following concept was introduced in [7].
4 The question whether an SRS is match-bounded for the set of all strings remains
open.
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Definition 34. Let R be an SRS and W a nonempty set that does not contain
the empty string. The set of all strings t for which there exist a string s ∈W and
strings u, t′, v such that lift0(s) →∗

match(R) ut
′v, base(t′) = t, and the height of

every symbol in t′ is at least 1, is denoted by raised(R,W ). If W ⊆ raised(R,W )
then W is called a witnessing set for R.

Lemma 35 ([7]). Let R be an SRS such that ε /∈ lhs(R). If W is a witnessing
set for R then R is not match-bounded for W . 	


In [7] it is further shown that an SRS is looping if and only if it admits a finite
witnessing set. We now show that the converse of Lemma 35 does not hold. We do
this by exhibiting an SRS R without witnessing set that is not match-bounded
(for the set of all strings). This settles an open problem in [7].

Lemma 36. The SRS R = {aab → ab, bc → ab} is not match-bounded for
{a, b, c}∗.

Proof. Similar to the proof of Claim 2 in [7, Example 20]. First we prove by
induction on n that

a1b1c2n−1
0 →∗

match(R) an+1bn+1

for all n � 1. If n = 1 then a1b1c0 →match(R) a1a1b1 →match(R) a2b2. If n > 1
then

a1b1c2n−1
0 = a1b1c2n−1−1

0 c2n−1

0 →∗
match(R) anbnc2n−1

0 →match(R) ana1b1c2n−1−1
0

→∗
match(R) ananbn →∗

match(R) an+1bn+1

by applying the induction hypothesis twice. It follows that

a0b0c2n

0 →match(R) a0a1b1c2n−1
0 →match(R) a1b1c2n−1−1

0 →∗
match(R) an+1bn+1

for all n � 1 and hence R is not match-bounded. 	


Lemma 37. The SRS R = {aab→ ab, bc → ab} admits no witnessing set.

Proof. Assume to the contrary that W ⊆ raised(R,W ) for some nonempty set
W ⊆ {a, b, c}+. Since c does not appear in any right-hand side of R it can never
reach a height greater than 0. Hence no string in W contains c and thus the
rule bc → ab cannot be used in establishing the inclusion W ⊆ raised(R,W ). It
follows that W ⊆ raised(R′,W ) for the SRS R′ = {aab → ab}. The following
finite automaton certifies that R′ is match-bounded for {a, b}∗ by 1:

��
��������������1

a0,b0

��

a1
��
������2

b1

��

Since W ⊆ {a, b}∗, R′ is also match-bounded for W . But then W ⊆ raised
(R′,W ) cannot hold by Lemma 35. 	
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Abstract. Sequence variables play an interesting role in unification and
matching when dealing with terms in an unranked signature. Sequence
Unification generalizes Word Unification and seems to be appealing for
information extraction in XML documents, program transformation, and
rule-based programming.

In this work we study a relation between Sequence Unification and
another generalization of Word Unification: Context Unification. We in-
troduce a variant of Context Unification, called Left-Hole Context Uni-
fication that serves us to reduce Sequence Unification to it: We define
a partial currying procedure to translate sequence unification problems
into left-hole context unification problems, and prove soundness of the
translation. Furthermore, a precise characterization of the shape of the
unifiers allows us to easily reduce Left-Hole Context Unification to (the
decidable problem of) Word Unification with Regular Constraints, ob-
taining then a decidability proof for an extension of Sequence Unification.

1 Introduction

In this work we study a relation between Sequence and Context Unification.
Both problems are generalizations of Word Unification [7,13,22,26,30]. Word
Unification is the problem of solving equations between terms build up from
letters and word variables. A solution of a word equation is a mapping from
variables to words that when applied to both sides of the equation the result is
the same word.

Sequence Unification is the problem of solving equations between terms built
up using an unranked signature (aka flexible arity, or variadic function symbols)
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and sequence and individual variables. Sequence variables are instantiated with
finite sequences of terms, while individual variables instantiate to a single term.
Sequence Unification is decidable and infinitary [15,16].

Solving equations with sequence variables has quite a broad range of appli-
cations. The rule-based programming language of Mathematica [31] relies on
a pattern matching mechanism, which supports sequence variables and flexible
arity function symbols. It can do matching modulo certain equational theo-
ries as well. Solving equations with sequence variables form a basis for schema
transformation operations [3,27] used in synthesis and transformation of logic
programs. Other applications include knowledge engineering and artificial intel-
ligence [8,11,12], automated reasoning [2,9,25], rewriting [10], functional logic
programming [1]. The ISO standard proposal for Common Logic [6] has nota-
tion for sequence variables (called there sequence markers). Recently there have
been developments in XML querying and transformation that model XML doc-
uments with terms over an unranked signature and use sequence matching and
unification techniques [15] for querying, transforming, and verifying them [4,5].
Obviously, we can not give an exhaustive overview of all the applications here.

Context Unification is the problem of solving equations between terms built
up using ranked signatures and with first-order and context variables. The latter
occur as monadic function symbols and denote contexts, i.e. terms with exactly
one hole. When the ranked signature considered is restricted to not contain
symbols of arity greater than one, the problem is equivalent to Word Unification.
When allowing one single binary symbol, its decidability is still unknown [21].
Nevertheless several fragments and variants are known to be decidable [18,19,28].
The main application field of Context Unification is computational linguistics,
mainly in compositional semantics of natural language [14,19,24].

Combining sequence and context variables in a single framework and equip-
ping it with regular constraint solving methods makes the framework more flex-
ible, with many potential applications [17,23].

The goal of this paper is to look in depth into relations between Sequence
and Context Unification. Throughout curryfication we define a translation from
sequence unification problems into context unification problems over a signature
consisting of constants and a single binary function symbol @ (curried context
unification problems), in addition, sequence variables are “encoded” into con-
text variables while individual variables become first-order variables. The trans-
lation preserves solvability in one direction: If the sequence unification problem
is solvable, then the corresponding context unification problem is solvable. To
preserve solvability in the other direction, we have to restrict possible solutions
of the curried context unification problems, which leads to a new variant of
Context Unification that we call Left-Hole Context Unification. We prove that
Left-Hole Context Unification is a decidable variant of Context Unification. We
do it by reducing Left-Hole Context Unification to Word Unification with Reg-
ular Constraints that is known to be decidable [30]. The reduction transforms
context equations into word equations on the postorder traversal of the terms.
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Regular constraints are required to filter the solutions of the word equations that
correspond to traversals of terms. This reduction is based in some ideas of [20].

With these reductions we get a new decidability proof for Sequence Unifi-
cation, easier than the one in [16]. In addition we also get decidability for an
extension of Sequence Unification. Moreover, this translation also allows us to
use the complexity results for context matching of [29] to characterize complexity
of sequence matching.

The paper proceeds as follows: Section 2 defines the two main problems: Se-
quence and Context Unification, Section 3 introduces the currying encoding and
shows its soundness, in Section 4 decidability of Left-Hole Context Unification
is shown, Section 5 discusses some extensions of Sequence Unification thanks to
the currying process, Section 6 is the conclusion.

2 Preliminary Definitions

2.1 Unranked Signatures

Given an unranked signature ΣU (i.e., a finite set of function symbols that have
flexible arity), a countable set of individual variables VI, and a countable set of
sequence variables VS, we define unranked terms over ΣU and V = VI ∪ VS by
the following grammar:

r ::= v | V | f(r1, . . . , rn)

where v ∈ VI, V ∈ VS, f ∈ ΣU, and n ≥ 0. The sets ΣU, VI and VS are mutually
disjoint. We will abbreviate terms of the form f() by f . The set of unranked
terms over ΣU and V is denoted by T (ΣU,V), or simply by TU when the signature
and the set of variables are unimportant. The letters f, g, a and b will be used
for function symbols, v and u for individual variables, V and U for sequence
variables, w for individual or sequence variables, and r and l for unranked terms.
We call unranked terms from T (ΣU,V) \ VS the individual terms.

A substitution for individual and sequence variables (IS-substitution for short),
is a mapping from individual variables to individual terms, and from sequence
variables to finite sequences of unranked terms such that all but finitely many
individual variables are mapped to themselves, and all but finitely many sequence
variables are mapped to themselves considered as singleton sequences.1 We use
the Greek letters σ and ϑ to denote IS-substitutions.

The composition of two IS-substitutions σ and ϑ, written as σ ◦ ϑ, is defined
by (σ ◦ ϑ)(r) = σ(ϑ(r)). Given an IS-substitution σ, we represent it as [v1 �→
σ(v1), . . . , vn �→ σ(vn), V1 �→ σ(V1), . . . , Vm �→ σ(Vm)] where v’s and V ’s are all
those variables for which σ(v) �= v and σ(V ) �= V .

The application of an IS-substitution σ to an unranked term r, denoted σ(r),
is defined by

σ(r) :=
{
σ(w) if r = w
f(σ(r1), . . . , σ(rn)) if r = f(r1, . . . , rn)

1 We do not distinguish between a singleton sequence and its sole member.
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Similarly, σ can be applied to a sequence of unranked terms 〈r1, . . . , rn〉:
σ(〈r1, . . . , rn〉) = 〈σ(r1), . . . , σ(rn)〉. For the sake of readability, we put sequences
between angular brackets, that are later flattened: if σ = [u �→ a, V �→ 〈f(b), c〉]
then σ(f(u, V )) = f(a, 〈f(b), c〉) = f(a, f(b), c). We call σ(r) (resp. σ(〈r1, . . . ,
rn〉)) an instance of r (resp. of 〈r1, . . . , rn〉) under σ. Note that the set of un-
ranked terms is not closed under IS-substitution application: An instance of a
sequence variable is an unranked term sequence that in general is not an un-
ranked term. However, an instance of an individual term is always an individual
term. An IS-substitution σ1 is more general than σ2 with respect to a set of
variables W , written σ1 �W σ2, if there exists ϑ such that (ϑ ◦ σ1)(w) = σ2(w),
for each w ∈ W .

A sequence unification problem (SU problem) is a set of equations (unoriented
pairs) of individual terms, denoted {l1 ?= r1, . . . , ln

?= rn}. IS-Substitutions ex-
tend to equations and unification problems: σ(l1

?= r1) = σ(l1)
?= σ(r1) and

σ({e1, . . . , en}) = {σ(e1), . . . , σ(en)}. A unifier of a sequence unification prob-
lem Γ is an IS-substitution σ such that σ(l) = σ(r) for each l ?= r ∈ Γ , and Γ is
solvable if it has a unifier. A unifier σ of Γ is called ground, if σ(Γ ) contains no
variables. A unifier σ1 of Γ is more general than another σ2, if σ1 �vars(Γ ) σ2.
A unifier σ is most general, if any other unifier σ′ satisfying σ′ �vars(Γ ) σ also
satisfies σ �vars(Γ ) σ′.

2.2 Ranked Signatures

A ranked signature ΣR is a finite set of fixed arity function symbols. We assume
that ΣR contains the 0-ary symbol •, called the hole. Given ΣR, a countable set
of first-order variables XF, and a countable set of context variables XC, we define
ranked terms over ΣR and X = XF ∪ XC by the following grammar:

t ::= x | X(t) | f(t1, . . . , tn)

where x ∈ XF, X ∈ XC, f ∈ ΣR such that f is n-ary and with n ≥ 0. When
n = 0, we omit the parentheses and write just f . The sets ΣR, XF and XC are
mutually disjoint. Constants are 0-ary function symbols. The set of ranked terms
over ΣR and X is denoted by T (ΣR,X ) or simply by TR when the signature and
the set of variables are unimportant. A context is a ranked term with exactly
one occurrence of the hole. A context C may be applied to a ranked term t,
written C[t], and the result is a ranked term over ΣR and X obtained from C
by replacing the hole with t. The letters x and y will be used for first-order
variables, X and Y for context variables, z for first-order or context variables, a
and b for constants, f for function symbols and s and t for ranked terms. The
size of a term t, noted by |t|, is defined as its number of symbols.

A substitution for first-order and context variables, or an FC-substitution in
short, is a mapping from first-order variables to hole-free ranked terms, and
from context variables to contexts such that all but finitely many first-order
variables are mapped to themselves, and all but finitely many context variables
are mapped to themselves applied to the hole. We use the Greek letters ϕ and
ρ to denote them. Composition is defined as above.
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Given an FC-substitution ϕ, we represent it as [x1 �→ ϕ(x1), . . . , xn �→ ϕ(xn),
X1 �→ ϕ(X1), . . . , Xm �→ ϕ(Xm)], where x’s are all first-order variables such
that ϕ(x) �= x, and X ’s are all context variables such that ϕ(X) �= X(•).

The application of an FC-substitution ϕ to a ranked term t, denoted ϕ(t), is
defined by

ϕ(t) :=

⎧⎨
⎩
ϕ(x) if t = x
ϕ(X)[ϕ(s)] if t = X(s)
f(ϕ(s1), . . . , ϕ(sn)) if t = f(s1, . . . , sn)

A context unification problem (CU problem) is a set of equations (unoriented
pairs) of ranked hole-free terms, denoted {s1

?≈ t1, . . . , sn
?≈ tn}. A unifier of a

context unification problem Δ is an FC-substitution ϕ such that ϕ(s) = ϕ(t),
for each s ?≈ t ∈ Δ, and Δ is solvable, if it has a unifier.

The notions of a more general and most general FC-unifier are defined in the
same way as for IS-unifiers.

3 Currying Terms

In this section we define the curryfication transformation that will serve us to
transform sequence unification problems into (a variant of) context unification
problems.

We firstly thought that this reduction was solvability preserving: a sequence
unification problem is solvable, if, and only if, its transformation into a context
unification problem is solvable. However, although the implication to the right is
almost trivial (Lemma 2), while trying to prove the other direction shows us that
there are solutions of the context unification problems that, when interpreted as
solutions for sequence unification problems, are not valid. We find out what is
the kind of solutions that we need to consider in order to get the left implication.
This characterization leads us to make the reduction, not directly to Context
Unification but to a variant of it, called Left-Hole Context Unification.

We assume that for each f ∈ ΣU there exists a unique and distinct constant
af ∈ ΣR \ {•}. The set of these constants is denoted by ΣC

0 . We also assume
that ΣR contains a binary function symbol @ and define ΣC

2 = {@}. Then, the
set ΣC

U = ΣC
0 ∪ΣC

2 is called the curried signature corresponding to ΣU.
Similarly, we associate to each v ∈ VI a unique and distinct first-order variable

xv ∈ XF, and to each V ∈ VS a context variable XV ∈ XC. The set of such first-
order and context variables is denoted by VC and is called the curried set of
variables corresponding to V .

Definition 1. The currying function C : T (ΣU,V) → T (ΣC
U,VC) is defined

recursively as follows:

C(f) = af

C(v) = xv

C(f(r1, . . . , rn, V )) = XV (C(f(r1, . . . , rn)))
C(f(r1, . . . , rn)) = @(C(f(r1, . . . , rn−1)), C(rn)), where n > 0, and rn /∈ VS.
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We also define C(s ?= t) as C(s) ?≈ C(t) and extend it to unification problems.

Using this definition we get C(f(b, V, f(v))) = @(XV (@(af , ab)),@(af , xv)).
The currying function can be extended to transform sequences of unranked

terms into contexts. To do so, we extend ΣU by a flexible arity function symbol
�, ΣC

U by the hole •, define C(�) = •, and then define the currying function
for a sequence of unranked terms (that do not contain �) as C(〈r1, . . . , rn〉) =
C(�(r1, . . . , rn)). For instance, we get C(〈V, a, f(a, b)〉) = C(�(V, a, f(a, b))) =
@(@(XV (•), aa),@(@(af , aa), ab)).

We can use this extension to currify IS-substitutions to FC-substitutions: For
an IS-substitution σ the corresponding C(σ) is defined as the substitution that
maps each variable C(w) to C(σ(w)) and any other variable to itself. For instance,
currying σ = [v �→ f(a, V ), u �→ g(b), V �→ 〈U, a, b〉, U �→ V ] gives C(σ) = [xv �→
XV (@(af , aa)), xu �→ @(ag, ab), XV �→ @(@(XU (•), aa), ab), XU �→ XV (•)] (as-
suming XU �= XV ).

Remark 1. It is interesting to notice that currying sequences of unranked terms
produces contexts. Moreover the “shape” of these contexts will play a crucial
role to prove the final result. In fact, the instantiations of context variables that
we will consider must correspond to “curry forms” of sequences. This fact will
allow us to prove that minimal solutions of the context equations resulting from
curryfication process are rab and Strahler-bounded (see Lemmas 6 and 7 in next
section), and prove that context unification restricted to this kind of unifiers is
decidable.

Definition 2. Given a term t ∈ T (ΣC
U,VC), we say that it is well-typed (w.r.t.

ΣU), if C−1(t) is defined, i.e. if there exists an r ∈ T (ΣU,V) such that C(r) = t.
Given a context C ∈ T (ΣC

U∪{•},VC), we say that it is well-typed (w.r.t. ΣU),
if C−1(C) is defined, i.e. if there exists a sequence 〈r1, . . . , rn〉, ri ∈ T (ΣU,V),
1 ≤ i ≤ n, such that C(〈r1, . . . , rn〉) = C.

Let ϕ be an FC-substitution such that ϕ(z) ∈ T (ΣC
U ∪ {•},VC) for all z ∈ VC.

We say that ϕ is well-typed (w.r.t. ΣU), if ϕ(z) is well-typed for all z ∈ VC.

Lemma 1. For any IS-substitution σ and for any unranked term (or sequence
of unranked terms) r over ΣU and V, we have C(σ)(C(r)) = C(σ(r)).

Proof: By structural induction on r.

Lemma 2. If the sequence unification problem Γ over ΣU and V is solvable,
then the context unification problem C(Γ ) over ΣC

U ∪{•} and VC is also solvable.

Proof: Let σ be a unifier of Γ . Then, by Lemma 1, it is easy to prove that C(σ)
is a unifier of C(Γ ).

In fact with the previous lemmas we have proved a stronger result: given a unifier
σ of l ?= r, we can find a unifier C(σ) of C(l ?= r) that satisfies the property
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C(σ(l)) = C(σ)(C(l)). This property is represented by the commutativity of the
following diagram:

l ?= r
C� C(l ?= r)

===
C
⇒

σ(l)

σ

� C� C(σ)(C(l))

C(σ)

�

Unfortunately, although we can currify a unifier of a sequence unification prob-
lem Γ to obtain a unifier of the context unification problem C(Γ ), the converse
is not true: f(V ) ?= g(f) is trivially unsolvable, but its curry form, XV (af ) ?≈
@(ag, af ), is solvable: the substitution [XV �→ @(ag, •)] solves the context equa-
tion but there is no unifier for f(V ) ?= g(f). In general, solvability is not preserved
by currying, i.e. the currying function is injective, but not surjective.

Example 1. The sequence unification problem

f(V1, V2)
?= f(f(a, V2), f(V2, a), b)

has these two unifiers:

σ1 = {V1 �→ 〈f(a), f(a), b〉, V2 �→ 〈 〉}
σ2 = {V1 �→ 〈f(a, b), f(b, a)〉, V2 �→ 〈b〉}

When currying the problem we get the context unification problem:

XV2(XV1(af )) ?≈ @(@(@(af , XV2(@(af , aa))),@(XV2 (af ), aa)), ab)

that has the following four solutions:

ϕ1 = {XV1 �→ @(@(@(•,@(af , aa)),@(af , aa)), ab), XV2 �→ •}
ϕ2 = {XV1 �→ @(@(•,@(@(af , aa), ab)),@(@(af , ab), aa)), XV2 �→ @(•, ab)}
ϕ3 = {XV1 �→ @(@(@(af ,@(•, aa)),@(af , aa)), ab), XV2 �→ •}
ϕ4 = {XV1 �→ @(@(@(af ,@(af , aa)),@(•, aa)), ab), XV2 �→ •}

It is easy to see that solutions ϕ1 and ϕ2 correspond respectively to σ1 and σ2:
ϕ1 = C(σ1) and ϕ2 = C(σ2), while ϕ3 and ϕ4 do not have any such “correspond-
ing” solutions.

In the previous example, substitution for variable XV1 in solutions ϕ3 and ϕ4 are
not “well-typed”, i.e. they are not the curry form of any sequence of unranked
terms. In ϕ1 the variable XV1 is mapped to the context @(@(@(•,@(af , aa)),
@(af , aa)), ab) that is the curry form of the sequence 〈f(a), f(a), b〉, whereas in ϕ3

the variable XV1 is mapped to the context @(@(@(af ,@(•, aa)),@(af , aa)), ab),
that would be the curry form of something like f(〈a〉, f(a), b) which is not a
sequence. In fact, C−1 is not defined for @(@(@(af ,@(•, aa)),@(af , aa)), ab).
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Thus, we can not assert that we can always reconstruct a unifier for the original
problem from the unifier that we get for its curry form, we will need these unifiers
to be well-typed.

Slightly abusing the notation, for a well-typed FC-substitution ϕ we denote
by C−1(ϕ) the IS-substitution defined as follows: (C−1(ϕ))(w) = C−1(ϕ(C(w))),
for each w ∈ V .

Lemma 3. Let Γ be a sequence unification problem over ΣU and V, and let
C(Γ ) be its curried form. Assume ϕ is a well-typed (w.r.t ΣU) unifier of C(Γ ),
then C−1(ϕ) is a unifier of Γ .

Proof: Let C(l) ?≈ C(r) ∈ C(Γ ). Then ϕ(C(l)) = ϕ(C(r)). Since ϕ, C(l), and C(r)
are well-typed, we get that ϕ(C(l)) and ϕ(C(r)) are well-typed as well. There-
fore, C−1(ϕ(C(l))) and C−1(ϕ(C(r))) exist and C−1(ϕ(C(l))) = C−1(ϕ(C(r))).
From this, by definition of C−1 for FC-substitutions we obtain (C−1(ϕ))(l) =
(C−1(ϕ))(r), i.e., C−1(ϕ) is a unifier of l ?= r ∈ Γ .

Thus to preserve the set of solutions and ensure soundness in our transformation,
i.e, to make the diagram commute, we can only consider well-typed unifiers. Now,
we want to characterize these unifiers. As we have already argued in Remark 1,
to be able to obtain a sequence from a context with C−1, the contexts must have
a certain “shape”.

Definition 3. A left-hole context is a context that has the hole in its leftmost
position, i.e. that can be built with this grammar:

L ::= • | X(•) | @(L, t)

for context variable X and hole-free ranked term t.

Lemma 4. Let ϕ be a ground FC-substitution such that ϕ(z) ∈ T (ΣC
U ∪ {•}, ∅),

for all z ∈ VC. Then, ϕ is well-typed, iff ϕ(X) is a left-hole context, for all
context variable X ∈ VC.

Proof: By structural induction, from Definitions 2 and 1.

Now we define a variant of Context Unification, called Left-Hole Context Unifi-
cation, as follows:

Definition 4. Left-Hole Context Unification (LHCU) is a variant of Context
Unification that requires instances of context variables to be left-hole contexts.

Theorem 1. Sequence Unification is P -reducible to Left-Hole Context Unifica-
tion.

Proof: The proof follows from Lemmas 2, 3 and 4. The C function is polynomial
in the sum of the sizes of the terms of the equations.
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Hence, currying preserves solvability: Γ is a solvable SU problem, iff C(Γ ) is
a solvable LHCU problem. Moreover, from each unifier of a sequence unifica-
tion problem we can reconstruct a unifier of the corresponding left-hole context
unification problem, and from each ground left-hole context unifier we can get a
unifier of the original sequence unification problem. Notice that some non-ground
left-hole context substitutions, like [X �→ @(•,@(y, a))], are not well-typed. The
currying function is not onto, hence there are LHCU problems that are not the
translation of any SU unification problem (see Section 5). Notice also that we
assume that a LHCU problem is solvable, iff it has a ground left-hole context
unifier. In fact, this is true, if we assume that the signature ΣR contains at least
a constant symbol.

4 Left-Hole Context Unification Decidability

In this section we reduce LHCU to Word Unification (WU) with Regular con-
straints, which is decidable [30]. Therefore, this reduction proves decidability of
LHCU. The reduction is based on some ideas from [20]. There, it is proved (see
Corollary 21) that if the rank-bound conjecture is true, then CU is decidable.
The conjecture (see Conjecture 15) claims that there exists a computable upper
bound for the Strahler number of some unifier of every solvable CU problem. Like
in [20], the reduction will be done via the traversals of the terms that allows us
to encode LHCU equations into WU equations. We need the regular constraints
to make this encoding sound and ensure that the solutions of the WU equations
really encode solutions of the corresponding LHCU problem. Here, we prove that
there exists an upper bound for the rab and the Strahler numbers of minimal
left-hole unifiers (see Lemmas 6 and 7).

In [21] it is proved that context unification is reducible to context unifica-
tion with constants and only one binary symbol. The same reduction applies to
LHCU. Therefore, from now on, we will assume that ΣR only contains constants
and a binary symbol that we represent as @. We also assume that ΣR contains at
least one constant. This is necessary to ensure that any solvable LHCU problem
has a ground unifier. Moreover, we will also assume w.l.o.g. that we have just
one initial context equation.

A naive encoding of a LHCU equation likeX(@(a, b)) ?≈ @(a,X(b)) into a WU
equation could be done using a postorder traversal of the terms of the equation
as follows2:

αa αb α@WX
?=w αa αbWX α@

where αa, αb and α@ are letters corresponding to a, b and @ respectively and WX

is the word variable that encodes the postorder traversal of the instantiation of
the context variable X .

Then, some of the word solutions are:

ϕ1 = [WX �→ ε]
ϕ2 = [WX �→ α@]

2 We use ?=w to denote word equations.
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where ε is the empty word. Notice that ϕ2(WX) does not correspond to a pos-
torder traversal of a context, while ϕ1(WX) is the postorder traversal of the
empty context •. This forces us to impose regular constraints to this encoding.
In what follows we will show that with regular constraints we can get a sound
encoding.

Definition 5. Given a LHCU problem Δ, we say that ϕ is a minimal unifier, if
there exists a most general unifier ρ such that ϕ = [x1 �→ a, . . . , xn �→ a,X1 �→
•, . . . , Xm �→ •] ◦ ρ, where {x1, . . . , xn, X1, . . . , Xm} = vars(ρ(Δ)) and a is a
constant of ΣR.

Notice that any solvable LHCU problem has a minimal unifier. The following is
an adaptation of the sound and complete set of rules for Linear Second-Order
Unification [18] to LHCU. Its soundness and completeness proof can be adapted
from [18].

Definition 6. The unification procedure is described by a set of problem trans-
formations, where every transformation has the form

〈Δ ∪ {s ?≈ t}, ϕ〉 =⇒ 〈ρ(Δ ∪Δ′), ρ ◦ ϕ〉

and is characterized by a rule s ?≈ t =⇒ Δ′ and a substitution ρ.

Simplification: a
?≈ a =⇒ ∅,

@(s1, s2)
?≈ @(t1, t2) =⇒ {s1

?≈ t1, s2
?≈ t2},

x
?≈ x =⇒ ∅, and

X(s) ?≈ X(t) =⇒ {s ?≈ t}, where ρ = [ ] in the four cases.

Projection: X(s) ?≈ t =⇒ {s ?≈ t} and ρ = [X �→ •].

Imitation: X(s) ?≈ @(t1, t2) =⇒ {X ′(s) ?≈ t1} and ρ = [X �→ @(X ′(•), t2)],
provided that X does not occur in t2,3and
x

?≈ s =⇒ ∅ and ρ = [x �→ s], provided x does not occur in s.

Flex-Flex: X(s) ?≈ Y (t) =⇒ {X ′(s) ?≈ t} and ρ = [X �→ Y (X ′(•))],
where X �= Y .

The transformations are applied starting with 〈Δ, [ ]〉 until we get a pair of the
form 〈∅, ϕ〉, or no transformation is applicable. In the first case, ϕ is a unifier
of Δ, and, in the second case, the problem is unsolvable.

Proposition 1. The unification procedure described in Definition 6 is sound:
if 〈Δ, [ ]〉 =⇒∗ 〈∅, ϕ〉, then ϕ is a unifier of Δ, and complete: if ϕ is a most
general unifier of Δ, then there exists a transformation sequence of the form
〈Δ, [ ]〉 =⇒∗ 〈∅, ϕ〉.4

3 The violation of these provisos leads to an occur-check error in the equations.
4 Notice that, for completeness, unifiers are required to be most general, but, in the
soundness part, we can get non-most general unifiers.
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Lemma 5. Given a LHCU equation s
?≈ t, for any minimal unifier ϕ, and any

context variable X ∈ vars(s ?≈ t), we have ϕ(X) = @(. . .@(•, ϕ(tn)) . . . , ϕ(t1)),
where ti is a subterm of s or of t, occurring as a second argument of an @, for
all 1 ≤ i ≤ n.

Proof: From inspection of the transformation rules of Definition 6, we can see
that right subterms (second arguments of @) are preserved: If 〈Δ1, ϕ〉 =⇒∗

〈Δ2, ρ ◦ ϕ〉 and t is a subterm of Δ2 occurring as a second argument of an @,
then there exists a subterm t′ in Δ1 such that t′ also occurs as a second argument
of an @, and t = ρ(t′).

Now, by inspection of the transformation rules we can also see that the only
transformation rule that introduces new right-subterms is the imitation rule,
that introduces a right-subterm of the equations as a new right-subterm in the
substitution. Therefore, if 〈Δ1, ϕ〉 =⇒∗ 〈Δ2, ρ ◦ ϕ〉, and t is a right-subterm of
ρ ◦ϕ(X), for some context variable X , then we can find an imitation step in the
transformation sequence of one of the following forms:

〈Δ1, ϕ〉 =⇒∗ 〈Δ′, ρ′ ◦ ϕ〉 =⇒ 〈Δ′′, [Y �→ @(Y ′(•), s2)] ◦ ρ′ ◦ ϕ′〉
=⇒∗ 〈Δ2, ρ

′′ ◦ [Y �→ @(Y ′(•), s2)] ◦ ρ′ ◦ ϕ′〉
〈Δ1, ϕ〉 =⇒∗ 〈Δ′, ρ′ ◦ ϕ〉 =⇒ 〈Δ′′, [y �→ s] ◦ ρ′ ◦ ϕ′〉

=⇒∗ 〈Δ2, ρ
′′ ◦ [y �→ s] ◦ ρ′ ◦ ϕ′〉

where either X = Y , t = ρ′′(s2) and s2 is a right-subterm of Δ′; or Y [or y]
is instantiated after X , and there is a right-subterm t′ in s2 [or s] such that
t = ρ′′(t′). Now, as we have proved, s2 = ρ′(t′′) [or t′ = ρ′(t′′)], for some right-
subterm t′′ of Δ1. Therefore, t = ρ(t′′), for some right-subterm t′′ of Δ1.

Completeness of the transformations ensure that any right-subterm of a most
general unifier is an instance of a right-subterm of the original problem.

Finally, minimal unifiers can be obtained from most general unifiers, ensuring
that instances of context variables have the form stated in the lemma.

The previous lemma allows us to prove that, if ϕ is a minimal unifier of s ?≈ t,
then the number of times that we can go to the right descending through any
branch of ϕ(s), viewing the term as a tree, is bounded on the number of subterms
of s ?≈ t.

Definition 7. The number of right accumulated branches (rab) of a ground
term t ∈ T C, noted rab(t), is defined as:

rab(a) = 0
rab(@(t1, t2)) = max{rab(t1), 1 + rab(t2)}

Lemma 6. Let s ?≈ t be a LHCU equation and ϕ a minimal unifier, then
rab(ϕ(s)) ≤ |s| + |t|.

Proof: Lemma 5 ensures that, if ϕ is a minimal unifier, then for any subterm
t1 of ϕ(s) occurring as a second-argument of an @ there exists a subterm t2 in
s

?≈ t such that t1 = ϕ(t2). Therefore, since there are |s| + |t| subterms in s ?≈ t,
and we can not repeat the same subterm in a branch, rab(ϕ(s)) ≤ |s| + |t|.
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The definition of rab is similar to the definition of the Strahler number of a term:

Definition 8. The Strahler Number of a term t built up from binary and nullary
symbols, noted Strahler(t), is defined recursively as follows:

Strahler(a) = 0

Strahler(@(t1, t2)) =
{
Strahler(t1) + 1 if Strahler(t1) = Strahler(t2)
max{Strahler(t1), Strahler(t2)} otherwise

for any constant a, and the binary symbol @.

Since, we have Strahler(t) ≤ rab(t), for any term t, we can prove the following.

Lemma 7. Given an LHCU equation s
?≈ t, all minimal unifiers ϕ satisfy

Strahler(ϕ(t)) ≤ |s| + |t|.

The previous lemma proves the rank-bound conjecture of [20] for a variant of
context unification. Therefore, we can conclude decidability of LHCU from a
small modification of the results of that paper. That proof was based on the use
of traversals of terms, and on traversal equations. These traversal equations were
reduced to word equations with regular constraints. Here, we find an easier way to
constraint traversals of ϕ(s) with regular expressions. These regular expressions
define postorder traversals of terms with a bounded rab and allows us to avoid the
use of traversal equations which can be replaced by simple word equations with
regular constraints. What follows is then an alternative proof for the decidability
of LHCU based on some ideas of [20].

Definition 9. Let Σ0 be the set containing a distinct letter αa, for every con-
stant a ∈ ΣR, and let α@ be also a letter (corresponding to the function symbol
@).5 Let us consider the following family of regular languages

L0 = Σ0

L1 = Σ0 (L0 α@)∗
· · ·

Ln = Σ0 (Ln−1 α@)∗

Lemma 8. The language Ln defines the set of postorder traversals of ground
terms t ∈ T (ΣR, ∅) satisfying rab(t) ≤ n.

Theorem 2. LHCU can be reduced to WU with regular constraints.

Proof: Assume that, apart from α@ and from a distinct letter αa, for every func-
tion symbol a ∈ ΣR, we also have a distinct word variable Wz , for every context
or first-order variable z ∈ X . The reduction uses the following transformation:

R(a) = αa

R(@(t1, t2)) = R(t1)R(t2)α@

R(x) = Wx

R(X(t)) = R(t)WX

5 Notice that from previous assumptions ΣR �= ∅.
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The translation is extended to context equations asR(s ?≈ t) = R(s) ?=w R(t).
We have to add the following regular constraints Wx ∈ Ln, for every first-order
variable x, and αaWX ∈ Ln, for every context variable X , where a is any of the
constants of ΣR, and n = |s| + |t|.

Extending the translation to substitutions, like it is done in the Section 3,
we can prove easily that the translation maps minimal context unifiers to word
unifiers. To prove that word unifiers may be decoded into context unifiers we
need to use the regular constraints and Lemma 8.

Corollary 1. Left-Hole Context Unification is decidable.

5 Back to the Beginning

Now we look back at where we started from: Sequence Unification. Decidability
of LHCU proved in the previous section gives another decidability proof of SU.
Looking at the proof closer, we notice that we prove something more: Decid-
ability of unification for an extension of SU. This extension, denoted ESU, is
obtained if we allow individual variables to occur in functional positions, and a
term to be applied to a sequence of terms. This is motivated by the fact that
LHCU problems may contain terms like, e.g., @(xv, a) that could be obtained if
we had currying defined for v(a). We do not go into formal details here because
of space limitation. The following example can serve for illustrating ESU:

Example 2. Extended sequence unification problem {f(a, V ) ?= v(a, b)} has two
mgu’s: σ1 = {V �→ b, v �→ f()} and σ2 = {V �→ 〈U, a, b〉, v �→ f(a, U)}. Applying
σ2 to v(a, b) gives f(a, U, a, b).

Decidability of ESU can be shown based on decidability of LHCU. The sequence
unification procedure [16] can be easily adapted to obtain a minimal complete
unification procedure for ESU.

Moreover, we can transfer some of the results on complexity of Context Match-
ing [29] to Extended Sequence Matching (ESM). The counterparts of linear con-
text matching and varity 2 context matching problems are linear ESM (LESM)
and varity 2 ESM (V2ESM), respectively. Shared-linear context matching gives
a fragment of ESM that we call prefix-closed ESM (PCESM). It can be char-
acterized by the following property: If a sequence variable V occurs in the sub-
terms f1(r1, . . . , rn, V, . . .) and f2(l1, . . . , lm, V, . . .), where f1, f2 ∈ ΣU ∪VI, then
f1 = f2, n = m, and ri = li for each 1 ≤ i ≤ n. It means that prefixes of all oc-
currences of a sequence variable should be the same. Then we have the following
theorem, that follows from the analogous results in [29] and the construction of
curry function:

Theorem 3. LESM and PCESM are in P. V2ESM is NP-complete.

It is hard to characterize a fragment of Sequence Matching obtained by inverse
currying from Stratified Context matching. There is no obvious pattern in the
form of such sequence matching problems.
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6 Conclusion

We study the relation between two generalizations of Word Unification: Sequence
Unification and Context Unification. We introduce a transformation function to
translate sequence unification problems into context unification problems over a
signature with constants and a single binary function symbol. The transforma-
tion preserves solvability in one direction: from SU to CU. To preserve solvability
in the other direction, we add a restriction on the form of solutions of context
unification problems, obtaining the left-hole variant of CU. We prove that a
sequence unification problem is solvable iff the corresponding left-hole context
unification problem is solvable, and the unifiers can be reconstructed in both
directions. Moreover, we prove that LHCU is decidable, reducing it to WU with
regular constraints. This result gives a decidability proof for an extension of SU,
and, in particular, a new proof of decidability of SU. Based on the transforma-
tion, we transfer some complexity results from context matching to sequence
matching.
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Abstract. Since 2004, a Termination Competition is organized every
year. This competition boosted a lot the development of automatic ter-
mination tools, but also the design of new techniques for proving termi-
nation. We present the background, results, and conclusions of the three
first editions, and discuss perspectives and challenges for the future.

1 Motivation and History

In a landmark paper in 1970, Manna & Ness [1] proposed a criterion for proving
termination of rewrite systems, based on reduction orderings. Since then, many
techniques for proving termination have been proposed, by providing means of
defining classes of reduction orderings: path orderings, polynomial interpreta-
tions, etc. A few implementations were developed [2,3,4] but practical results in
proposed sets of benchmark problems [5,6] were quite poor.

A disruptive progress came up in 1997, with the Dependency Pair criteria
proposed by Arts & Giesl [7], allowing to prove termination with a larger class
of orderings than reduction orderings. This brought up a new interest towards
automation of termination proofs. Since around 2000 several tools were devel-
oped for this goal, and in 2003, for the Workshop on Termination in Valencia,
Albert Rubio organized a special session for comparing tools. Tool authors gath-
ered, proposed a few challenging examples, and each of them manually ran their
own tool and told what they were able to prove. Participants were AProVE [8],
Cariboo [9], CiME [10], MatchBox [11], Termptation [12] and TTT [13] on rewrite
systems problems; and TALP [14], TerminWeb [15] and Hasta-La-Vista [16] for
logic programs. MatchBox was only dealing with string rewriting.

Stimulated by the enthusiasm of the participants it was decided to organize
an annual competition. Participants agreed on a common syntax of problems,
in order to build a shared database called the TPDB (Termination Problem
Data Base, http://www.lri.fr/∼marche/tpdb/). The main idea was that the
competition must be run fully automatically, to demonstrate the ability of tools
to solve termination problems, without requiring any expertise use, such as set-
ting clever options or parameters as what the author’s tool can do. C. Marché
took care of the organization and the development of the required utilities for
running the competition automatically and making results available online. The
main objectives for such a competition were and remain:

F. Baader (Ed.): RTA 2007, LNCS 4533, pp. 303–313, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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– to stimulate research in this area, shifting emphasis towards automation,
– to provide a standard to compare termination techniques.

The first full competition in this style ran in May 2004, the week before the
Workshop on Termination in Aachen, where the results were reported. There
were three categories, corresponding to different input syntax: term rewriting
(TRS, 5 participating tools), string rewriting (SRS, 5 tools) and logic programs
(LP, 2 tools). With respect to the first event in 2003, there was only one new
tool: TORPA [17], specialized to SRSs. Some other tools were not able to partici-
pate in this automatic competition: Termptation, TerminWeb and Hasta-La-Vista.
AProVE had a new module allowing it to participate to the LP category. The
TRS category has been subdivided into 5 sub-categories corresponding to stan-
dard rewriting, rewriting modulo theories, innermost strategy, context-sensitive
strategy and conditional rewriting.

In 2005, Hans Zantema joined the organization of the competition, and the
second competition ran in April 2005, the week before RTA in Nara. This time
there were only two categories: TRS and SRS. In TRS category, Cariboo did not
participate but 2 new tools joined: TPA [18] and TEPARLA [19], leading to a total
of 6 tools. They also participated to the SRS category, together with the new
tool JamBox [20], thus there were 8 participants. A new sub-category for relative
termination was introduced, both for term rewriting and string rewriting. In the
meantime, the size of the TPBD grew significantly. Several termination proofs
were given for systems where the 2004 versions failed, showing improvements of
the tools. The ranking of the tools were quite similar as the 2004 edition.

In 2006, the competition was held in June, two months before WST and RTA
in Seattle. In the TRS category, there were eight participants: TTT was replaced
by a variation called TTTbox [21], and two new tools joined: MU-Term [22] and
JamBox [20] (which was only in SRS category in the previous year). Nine tools
were in the SRS category: a new tool MultumNonMulta [23] joined. This year,
the rankings have been significantly modified.

In the following, we first describe in Section 2 the rules of the competition.
Then in Section 3 we summarize the results and comment their evolution over the
years. We draw some conclusions and perspectives in Section 4 and we provide
a list of challenges for future competitions in Section 5.

2 The Rules

The following rules were applied to the 2006 termination competition.

– Submission of new problems for TPDB is open until a few weeks before
the competition, when this new TPDB is publicly available for testing and
tuning the tools.

– Just before the competition participants submit
• final versions of the tools, and
• secret problems, up to ten per participant per category, that are added

to the version of TPDB used for the competition, but not accessible for
other participants before the competition.
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– All tools apply on all problems in the corresponding TPDB categories, all
on the same machine. The required output of every tool is
• “YES”, followed by the text of a termination proof, or
• “NO”, followed by the text of a non-termination proof, or
• anything else, interpreted as “DON’T KNOW”.

– Execution of more than one minute for any tool on any termination problem
causes a time-out, interpreted as “DON’T KNOW”.

– All results are reported on-line, including generated proof text, and statistics
about scores and running time.

– Any tool generating a wrong answer is “disqualified” (see Section 3.4).
– There are no formal rules and consequences of being a “winner”, apart from

the honour of having a high or the highest score in some (sub)category.

These rules were designed in such a way that participants also being organizer
had no advantage of being organizer. In 2006, categories were subdivided in the
following eight subcategories:

– Standard term rewriting.
– Innermost term rewriting. This means that only rewrite steps are allowed

for which all proper subterms of the redex are in normal form.
– Context-sensitive strategy. This means that for every operation symbol it is

specified under which position rewriting is allowed.
– Term rewriting modulo theory. This means that apart from the rewrite rules

also equations are specified (usually associativity and commutativity) mod-
ulo which rewriting is done.

– Relative termination of term rewriting. This means that two rewrite systems
R, S are specified for which termination of →∗

S · →R · →∗
S has to be proved.

– Standard string rewriting. This coincides with standard term rewriting in
which all symbols have arity one.

– Relative termination of string rewriting.
– Logic programs.

3 Competitions Results

We present here a summary of the results in the three first editions of the compe-
tition. We only present and discuss on the two main categories: standard string
rewriting and standard term rewriting. More detailed results including all termi-
nation problems, all generated proofs, executable code of the tools, and measured
execution times and statistics are available from http://www.lri.fr/~marche/
termination-competition/.

3.1 SRS Category

The following table summarizes the results of the SRS category, for the three
editions of the competition. In the second column we give the number of problems
submitted to tools. Then for both YES and NO answers, we give the total number

http://www.lri.fr/~marche/termination-competition/
http://www.lri.fr/~marche/termination-competition/
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of problems solved, then the three best tools with their respective score with
respect to this total. We also give the number of problems that remain unsolved
by any tool.

year # pbs answer overall 1st 2nd 3rd
2004 104 yes 89 TORPA 88 AProVE 87 MatchBox 49

no 7 MatchBox 7 TORPA 6 AProVE 5
unk. 8

2005 153 yes 139 TORPA 126 AProVE 114 JamBox 102
no 9 JamBox and MatchBox 9 TORPA 5
unk. 5

2006 322 yes 263 JamBox 251 TORPA 201 MatchBox 176
no 25 JamBox 25 AProVE and MatchBox 12
unk. 34

After its short win in 2004, TORPA has been a clear winner in 2005. But a
big surprise happened in 2006: the new JamBox tool was significantly improved
and became clearly more efficient than TORPA. The reason is the new technique
of matrix interpretations implemented in JamBox, discussed below. It is also
noticeable that the number of problems significantly grew in 2006, incorporating
sets of problems from new research groups. This clearly made the competition
exciting, and the next competition will be interesting to follow.

3.2 TRS Category

year # pbs answer overall 1st 2nd 3rd
2004 521 yes 426 AProVE 410 TTT 397 CiME 297

no 22 AProVE 22 MatchBox 21 TTT 12
unk. 73

2005 773 yes 588 AProVE 576 TTT 509 TPA 407
no 94 AProVE 94 MatchBox 80 TEPARLA 15
unk. 91

2006 865 yes 686 AProVE 638 JamBox 626 TPA 422
no 103 AProVE 103 MatchBox 85 TEPARLA 15
unk. 76

The clearly visible fact is that the AProVE tool has been constantly the best
tool each year, both for proving and disproving termination. However, this should
not hide that this required strong improvement each year: for example, the
AProVE 2005 version would not have won the 2006 edition. Indeed, the Jam-
Box tool made the 2006 competition very exciting, showing how efficient was the
new technique of matrix interpretation implemented in JamBox. It is noticeable
too that each year, there were a significant amount of problems not solved by
the winner but solved by others.

Finally, notice that although the number of problems increased by 92 between
2005 and 2006, the number of undecided problems decreased by 15: this is a clear
evidence that the tools efficiency considerably improved.



The Termination Competition 307

3.3 Other Categories

To summarize briefly the other categories: AProVE remained winner in every
sub-category, except relative termination which it does not support. JamBox
won relative termination subcategories for TRS and SRS in 2006.

In the Logic Programs category, AProVE won both 2004 and 2006 editions.
The evolution in this category is poorly significant, it seems that the lack of
participants does not encourage efforts in this direction. In other words, the
competition cannot reach its goal of stimulating research if existing other tools
are not willing to participate.

3.4 Remarks

soundness issue Since all tools execute complicated tasks it is likely that they
contain bugs. In 2006, for two tools (CiME and MU-Term) we detected some
obviously incorrect generated proofs. The tools have been “disqualified” in
the sense that their scores are not taken into account (results above would
not be different anyway). We emphasize that it does not imply that all
termination proofs generated by the remaining tools are correct: we cannot
check all thousands of generated termination proofs. As a long-term objective
we see an automatic formal correctness check of the generated proofs.

timing issue Most proofs are found within less than a second. For most tools
the average time to find a termination proof was a few seconds. In 2006,
we experimented running a second round for problems not solved in a one
minute timeout, giving a time limit of five minutes instead. In the category of
term rewriting it occurred a few times that a termination proof was found by
a tool in the second round where all tools failed in the first round: 3 times for
standard rewriting and once for context-sensitive and modulo theory subcat-
egories. In the string rewriting category, the tools JamBox, MultumNonMulta
and TPA found termination proofs in a second round where all tools failed
in the first round. The total number of these systems was 5, both in the
subcategories standard (2) and relative termination (3). The time limit has
a small influence on the set of unsolved problems, emphasizing the fact that
it is not easy to know when a tool does not solve a problem, whether it is
just because of lack of time, or because of an intrinsic insufficiency of the
techniques implemented.

non-termination Since the first competition in 2004, it was decided to evaluate
the ability of proving non-termination. Before that, no tool except maybe
MatchBox was implementing any technique for disproving termination. We
emphasize that the competition stimulated both the development of new
techniques for disproving termination, and of course implementations (but
still not all tools have facilities for this). The non-termination proofs found
were all generated by presenting a looping reduction. For logic programs,
no tool is able to give non-termination proofs. For the rewriting categories,
only very few proofs of non-termination are obtained for other sub-categories
than standard rewriting.
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challenging problems After the 2004 competition, we tried to designate a
subset of unsolved problems that could represent challenges. We chose some
modifications of Toyama’s system, and they were solved in the 2005 compe-
tition. Again, in 2005 we presented termination of the SRS Zantema-z086
consisting of the three rules aa→ bc, bb→ ac, cc→ ab as an open problem,
since no tool solved this system in the two first editions. It was also proposed
as a new problem in the RTA open problem list. This has been first solved
by Hofbauer and Waldmann [24], and without any doubt it stimulated the
development of the new matrix interpretation method [25,26], by which the
problem was automatically proved terminating by JamBox in 2006.

4 Conclusions and Perspectives

The three first edition of the Termination Competition have been really exciting
due to new developments of termination techniques and new implementations.
Dependency graph criteria[7], together with efficient techniques to search for ar-
gument filterings, path orderings and polynomial interpretations, were shown to
be the most useful techniques. The most powerful new technique whose discovery
was motivated by the competition is the matrix method [25,26]. Regarding im-
plementations of this technique, we emphasize that JamBox and MatchBox both
use an external SAT solver for searching for suitable interpretations. AProVE
also uses a SAT solver to search for path orderings and polynomial interpre-
tations [27]. It seems to be a very efficient way to benefit from the very good
progress made by SAT solvers, which maybe indeed due to the existing compe-
tition (http://www.satcompetition.org/) of this kind.

We also emphasize that although AProVE won all three competitions in stan-
dard TRS category, it couldn’t remained winner each year without major im-
provements in the techniques implemented: handling applicative TRSs [28], poly-
nomials with negative coefficients[29], subterm criterion [30], match-bounds for
term rewriting [31], etc.

We consider that the termination competition has been very successful so far,
justifying annual continuation:

– It provides an objective way to compare the power of various implementa-
tions and techniques for proving termination.

– New challenges emerge from the competition, stimulating the development
of new powerful techniques.

As remarked in Section 3.4, an important objective for the future is an auto-
matic formal correctness check of generated proofs. Achieving this both requires
a lot of work and agreement about formats of the proofs. But recent progress has
been made by two research groups using the Coq proof assistant for formalizing
a soundness proof checker: CoLoR [32] and A3PAT/CiME [33]. It is likely that a
sub-category for certified termination proof will appear in the next competition.

The emphasis in the competition is in rewriting rather than termination of
programs. For logic programs, even if recent progresses have been made, the

http://www.satcompetition.org/
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participating tools restricted to the specific technique of transforming the logic
program to a term rewriting system and then prove termination of the latter. We
should like to have participation by other tools not focusing on rewriting, such
as the TERMINATOR tool [34]. For the next competition we plan to add new
categories for functional programs (Haskell, ML) and for some kind of imper-
ative programs. Another aspect, which was forgotten when focusing on rewrite
systems, is the support for numerical computations, using for example built-in
integers. This was indeed a important originality of the Hasta-La-Vista tool for
logic programs. This aspect should be considered again in the future, to support
such numerical computations in functional or imperative programs.

5 Challenges

To stimulate further research, we now present some challenging problems. All
references in typewriter font refer to TBDB. Right after the end of the 2006
competition, it was emphasized that the SRS SRS/Waldmann-jw1

aaa→ bab bbb→ aaa

was probably the shortest TPDB problem unsolved by any tool. In the meantime,
it has been solved by A. Nogin and C. Witty (http://lists.lri.fr/pipermail/
termtools/2006-August/000295.html ) and now can be solved automatically
[35].

5.1 Longstanding Open Problems

Challenge 1 (Hercules and Hydra battle). It is problem TRS/D33-33, the
famous Hercules and Hydra battle. It is the only problem of old benchmarks [5,6]
which remain unsolved by any tool.

h(z, e(x)) → h(c(z), d(z, x)) d(z, g(0, 0))→ e(0)
d(z, g(x, y)) → g(e(x), d(z, y)) g(e(x), e(y)) → e(g(x, y))

d(c(z), g(g(x, y), 0))→ g(d(c(z), g(x, y)), d(z, g(x, y)))

At several occasions, some tool author pretended to be able to solve it, but it
never happened during the competition, and it is impossible to know whether it
was requiring specific user interaction, or even if it was not a bug in the tools.

Several other TRSs have been proposed in the literature, for various purposes,
for which the termination was left as an open problem. In 1997, a TRS for in-
teger arithmetic [36] was presented, with a very complicated ad-hoc proof. It
has been shown terminating using MSPO in 2003, and in the same year solved
automatically by CiME using dependency pairs modulo AC and polynomial inter-
pretations. In the same article, a large TRS for rational arithmetic is presented,
whose termination remains open. In 2000, Deplagne [37] introduced a TRS for
sequent calculus modulo, leaving again open its termination. It is now shown

http://lists.lri.fr/pipermail/termtools/2006-August/000295.html
http://lists.lri.fr/pipermail/termtools/2006-August/000295.html
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terminating both by AProVE and CiME. Bonelli proposed a TRS for explicit
subsitutions, and was unable to prove its termination. It has been introduced
as a secret problem in the 2005 competition (TRS/secret2005-cime1), and was
first shown to be terminating by TEPARLA. Another system related to explicit
substitution is TRS/Zantema-z10. Several papers were devoted only to proving
termination of this system; a shorter proof based on semantic labelling [38] was
first found manually, and later on by TPA.

A very long-standing open termination problem appeared in 1991: a TRS
proposed by Cohen and Watson [39] for arithmetic:

Challenge 2 (Cohen-Watson system for arithmetic). This is the 22-rules
system TRS/secret2006-cime1 of the TPDB. Its termination status is unknown,
and is indeed the problem #65 in the RTA List of Open Problems.

5.2 Semantic Decreasing Argument

A large class of problems which remain unsolved in the TPDB seem to require a
decreasingness argument that is “semantic”: it depends on a value of a normal
form of a subterm (which is more or less a return value of some auxiliary function
call). This is especially true for TRSs coming from automatic translations of
context-sensitive TRSs, or Maude or OBJ programs. This phenomenon may
occur also when dealing with functional or imperative programs.

Challenge 3 (While loop). As an instance of this problem, we mention
TRS/Zantema06-while:

f(t, x, y)→ f(g(x, y), x, s(y)) g(s(x), 0)→ t g(s(x), s(y)) → g(x, y)

which encodes the obviously terminating loop while x > y do y := y + 1. Using
the semantics, e.g., by semantic labelling [38], a termination proof can be given,
but until now no tool could solve it.

5.3 String Rewriting Systems

In 2006, three series of randomly generated SRSs where added, and those prob-
lems are poorly solved by tools, hence those series provide a set of challenging
problems. We propose below a challenging problem with a more natural compu-
tational content.

Challenge 4 (Power 2 to power 3). This is problem SRS/Zantema-z079:

caa→ ac acb→ adb ad→ daaa bd→ bc

which essentially rewrites 2n to 3n, more precisely bca2nb rewrites to bca3nb. No
tool could solve it, for any of the three editions of the competition.
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5.4 Non-termination

There are also challenging problems for showing non-termination. An example
of these is TRS/HofWald-6:

f(f(a, x), y)→ f(f(x, f(a, y)), a)

where a is a constant and x, y are variables, which is not solved by any tool,
although there seems to be a very simple and easy implementable way to ob-
serve non-termination: every ground instance of the right hand side contains an
instance of the left hand side. Another example is the following SRS,

al→ la ra→ ar bl→ bar rb→ lb

being SRS/Zantema-z073. It is obviously non-terminating since banlb→∗ ban+1lb
for all n, but no tool can solve it. Generally speaking, techniques should be de-
veloped for automatically proving non-looping non-termination.

Acknowledgements. Special thanks to Albert Rubio who brought up the idea
of a termination competition, and set up the first TPDB. Thanks to all partici-
pants all over the years.

References

1. Manna, Z., Ness, S.: On the termination of Markov algorithms. In: ICSS. pp.
789–792 (1970)
http://perso.ens-lyon.fr/pierre.lescanne/not accessible.html

2. Lescanne, P.: Computer experiments with the REVE term rewriting system gen-
erator. In: Proc. POPL’83 (1983)

3. Forgaard, R., Detlefs, D.: Reve 2.4: A program for generating and analyzing term
rewriting systems. Massachusetts Institute (1984)

4. Steinbach, J.: Generating polynomial orderings. Information Processing Letters 49,
85–93 (1994)

5. Dershowitz, N.: 33 examples of termination. In: Comon, H., Jouannaud, J.-P.
(eds.) Spring School of Theoretical Computer Science. LNCS, vol. 909, pp. 16–
26. Springer, Heidelberg (1995)

6. Steinbach, J., Kühler, U.: Check your ordering – termination proofs and open
problems. Technical Report SEKI Report SR-90-25, Univ. Kaiserslautern (1990)

7. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theo-
retical Computer Science 236, 133–178 (2000)

8. Giesl, J., Schneider-Kamp, P., Thiemann, R.: The AProVE tool (RWTH, Aachen,
Germany) http://aprove.informatik.rwth-aachen.de/

9. Fissore, O., Gnaedig, I., Kirchner, H.: CARIBOO: A multi-strategy termination
proof tool based on induction. In: Rubio, A., ed.: WST, pp. 77–79 (2003)
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Abstract. We introduce a method for establishing that a reduction
strategy is normalising and minimal, or dually, that it is perpetual and
maximal, in the setting of abstract rewriting. While being complete, the
method allows to reduce these global properties to the verification of
local diagrams. We show its usefulness both by giving uniform proofs of
some known results and by establishing new ones.

1 Introduction

Consider the following two natural combinations of properties of strategies.

– normalisation (constructs a reduction to normal form from an object if it
exists) and minimality (normal forms are reached in the minimal number of
steps).

– perpetuality (constructs an infinite reduction from an object if it exists) and
maximality (normal forms are reached in the maximal number of steps).

The former combination is of interest when implementing a rewrite system,
whereas the latter is useful for its complexity analysis. Although both have
received attention for various concrete strategies and rewrite systems, to our
knowledge no general proof method for establishing them has been developed.

In this paper we develop methods for comparing strategies 1 and � in two
ways, the former being more appropriate for rewrite systems having unique nor-
mal forms, the latter for systems where normal forms need not be unique:

(∀∀) For every pair of maximal 1- and �-reductions from the same object, the
length of the first does not exceed that of the second.

(∀∃) For every maximal 1-reduction from an object, there exists a maximal �-
reduction from that object which is at least as long.

The main contributions of this paper are firstly, the reduction of both combina-
tions of properties of the first paragraph to the (∀∀)-comparison problem, and
secondly the further reduction of both comparison problems which are global
(quantifying over all reductions from an object), to local properties (quanfifying
only over all steps from an object).

To illustrate the power of our methods, we use examples and results from the
literature. Other than that, we assume only basic rewriting knowledge.

F. Baader (Ed.): RTA 2007, LNCS 4533, pp. 314–328, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 Abstract Rewrite Systems and Strategies

We recapitulate from [1, Chs. 8 and 9] the main notions from rewriting employed,
introduce some new ones, and fix our notations. For background, motivation,
and further pointers to the literature, we refer the reader to the mentioned
chapters, as both our fundamental notions of ARS and strategy (going back at
least to [2,3]) seem to be missing from other textbooks on rewriting.

Definition 1. An abstract rewrite system (ARS) is a system consisting of a
set of objects, a set of steps, and source and target functions mapping steps to
objects [1, Def. 8.2.2].

We employ arrow-like notations to denote ARSs, e.g. →, 1, �, �. That φ is
a step of → from a to b, i.e. having a as source and b as target, is denoted by
φ:a → b or a →φ b. We may omit the step, the source, or the target from this
notation when irrelevant, e.g. a→φ indicates φ is a step from a, and a→ b that
there is a step from a to b. A normal form is an object which is not the source
of a step. An object is deterministic if it is the source of at most one step. An
ARS is deterministic if all objects are. We say � is a sub-ARS of →, denoted by
� ⊆ →, if the set of objects/steps of � is a subset of the set of objects/steps of
→, and the domain/source map of � is the restriction of that of →.

Remark 1. We follow [2] in employing the intensional notion of abstract rewrite
system, instead of the extensional notion of rewrite relation. Whereas the former
allows for distinct steps between the same two objects, the latter does not. For
instance, in the abstract rewrite system generated by the rule I(x) → x there
are two distinct steps from I(I(a)) to I(a), one corresponding to contracting
the outer redex, the other to contracting the inner redex, whereas in the rewrite
relation these are (necessarily) confounded. As a consequence, strategies such as
the innermost strategy could not be expressed faithfully at the abstract level if
we were to employ rewrite relations.

Using the above we present the main notion of this paper, that of a strategy.

Definition 2. A strategy for an ARS → is a sub-ARS of → having the same
sets of objects and normal forms [1, Def. 9.1.1].

The idea is that a strategy corresponds to making a choice among the steps
possible at each object. The choice may leave all possibilities open (→ is a strat-
egy for itself), but not decline all (as that would create normal forms).

Example 1. There are exactly three strategies for the ARS a � b→ c: the ARS
itself, a → b → c, and a � b c [1, Exc. 9.1.3]. Note that e.g. the sub-ARS
a← b→ c is not a strategy as it turns a into a normal form.

Remark 2. Our notion of strategy is the intensional version of the extensional
notion in [3]. Like there, we do not impose additional conditions such as de-
terminism or computability often found in the literature. Determinism would
preclude expressing the (as opposed to an) innermost strategy. Computability
would preclude e.g. the internal needed strategy below from being a strategy.
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Henceforth 1 and � are assumed to be strategies for →.

As the notions of 1-, →-, and �-normal form are all the same, we simply speak
of normal forms. Since strategies are ARSs themselves, all ARS notions and the
ARS constructions below apply to them. The converse of an ARS is obtained
by swapping the source and target of each step, and denoted by the mirror-
image of its notation, e.g. ← denotes the converse of →. The union of two ARSs
is obtained by taking unions componentwise, and denoted by the union of the
notations, e.g. ↔ denotes the union of ← and →. A reduction is either finite or
infinite. A finite reduction from a to b is inductively defined as being either the
empty reduction a and then a = b, or a step from a to c followed by a finite
reduction from c to b, for some c. An infinite reduction from a is coinductively
defined as a step from a to b followed by an infinite reduction from b, for some
b. The reduction ARS, generated by taking the finite reductions as steps, is
denoted by the repetition of the notation of the original ARS, e.g. → generates

. (If the repetition would lead to clutter, we affix a superscripted ∗ instead,
e.g. ↔ generates ↔∗.) Concatenating a finite reduction R and a reduction S is
defined in the usual way by induction on R and denoted by R·S. The length of a
reduction, obtained by counting the steps in it, is either finite (a natural number)
or infinite (ω). A reduction is maximal if it either is a finite reduction to normal
form or infinite. An object is terminating if it only allows finite reductions. An
ARS is terminating, if all objects are. We will indicate (constraints on) the length
of a reduction by superscripting, e.g. R:a→≤5 b indicates that R is a reduction
of length at most 5 from a to b, and S:a →ω that S is an infinite reduction
from a. A conversion is a finite ↔-reduction, and we call the generated ↔∗ the
conversion ARS. The distance d(R) of a conversionR is the number (an integer)
of →-steps minus the number of ←-steps in R. An ARS is said to have unique
normal forms if every object has a conversion to at most one normal form.

Remark 3. It would be interesting to extend our results below to reductions of
transfinite length (applicable to concrete systems as those in [1, Ch. 12]). That
would require developing an intensional version of transfinite ARSs first.

We conclude these preliminaries with formalizing the properties of strategies we
would like to establish, as discussed in the first paragraph of the introduction,
We already use 1 and � according to the rôle they will play below.

Definition 3. – 1 is normalising, if every object from which there is an →-
reduction to normal form, only allows finite maximal 1-reductions.

– 1 is minimal, if the length of any 1-reduction from an object to normal form,
is minimal among the →-reductions from the former to the latter.

– � is perpetual, if every object from which there is an infinite →-reduction,
only allows infinite maximal �-reductions.

– � is maximal, if the length of any �-reduction from an object to normal
form, is maximal among the →-reductions from the former to the latter.
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3 Comparing Strategies Universally

We introduce a method to compare strategies 1 and � for a rewrite system →.

Definition 4. 1 is universally better than �, if for every object a, and every
pair of maximal 1- and �-reductions from a, the length of the first does not
exceed that of the second.

As we use the adverb ‘universally’ only to distinguish the current notion of better
from the one to be introduced in the next section, we will elide it in the rest of
the present section. Being better than is transitive, but not an order.

Example 2. Setting both 1 and � to the ARS a→ b→ c shows a strategy need
not be self -better, i.e. better than itself. The reason for failure is that there are
reductions of distinct lengths from the object a to its normal form c.

Letting 1 and � be obtained from the ARS a → bi → c with i ∈ {1, 2}, by
omitting either of the steps a→ bi, shows failure of anti-symmetry: the strategies
are distinct but each is better than the other.

Removing the step from a to b in the first part of the example yields a strategy
which is both better and self-better (cf. Theorem 3). These exist in general:

Proposition 1. Each ARS has a better strategy which is self-better.

Proof. For an ARS→, let WNi be {a|i = μn.a→n ·	}, the set of objects whose
shortest reduction to normal form has length i. The strategy 1 is obtained from
→ by omitting all steps from WN1+i to the complement of WNi. As by definition
each object in WN1+i has some step to WNi, 1 is a strategy for →. It is better
than both → and itself since every maximal 1-reduction from an object in WNi

has length i, and the other objects only allow infinite maximal reductions. 	

When applied to the ARS in the second part of Example 2 the construction
yields the ARS itself. More generally, it yields the largest better strategy which
is self-better. Note that, dually, a self-better strategy � for→ with→ better than
� , exists, but only for → finitely branching (FB). Leaving to future research a
more thorough study of the better relation, we proceed by linking it to the two
combinations of properties in the first paragraph of the introduction.

Theorem 1. If 1 is better than �, then:

– 1 is normalising and minimal, in case � =→.
– � is perpetual and maximal, in case → = 1.

The reverse implication holds in case → has unique normal forms.

Proof. Let R and S be maximal 1- and �-reductions from a.

– ‘Only if’: Suppose S ends in some normal form b. By the assumption that 1
is better than � =→, the length of S is an upper bound on the length of any
1-reduction from a (normalisation), in particular on that of R (minimality).
‘If’: Since otherwise there is nothing to prove, suppose S ends in some normal
form b. By normalisation of 1, by � = →, and maximality ofR, then R must
also end in some normal form, which by uniqueness of normal forms is equal
to b, from which we conclude by minimality of 1.
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– ‘Only if’: By the assumption that → = 1 is better than �, the length of R
is a lower bound on the length of any �-reduction from a (perpetuality), in
particular on that of S if S ends in some normal form (maximality).
‘If’: Since otherwise there is nothing to prove, suppose S ends in some normal
form b. By perpetuality of �, by → = 1, and maximality of R, then R must
also end in some normal form, which by uniqueness of normal forms is equal
to b, from which we conclude by maximality of �.

Remark 4. That the reverse implication needs uniqueness of normal forms to
hold, could indicate that our notion of being better is ‘too universal’; even lengths
of reductions to distinct normal forms are compared. It does not seem to make
much sense in general to do so (think of an ARS modelling a non-deterministic
choice between otherwise unrelated computations). We leave it to future research
to investigate relativising comparisons to the result (normal form) computed.

The theorem suggests that for establishing either of the combinations, normal-
isation and minimality or perpetuality and maximality, a single proof method
for establishing that one strategy is better than another might suffice. It does.

Definition 5. If a � ·� b implies either �ω b or a �n · �m b for some n ≤ m,
then 1 ordered locally commutes with �, abbreviated to OLCOM(1,�).

Our reduction of the global property of ‘being better’ to the local property
OLCOM is analogous to the way in which Newman’s Lemma reduces the global
property of confluence to the local property of local confluence [2] (more accu-
rately, to the reduction of confluence to local decreasingness [4], as that method
is complete). Indeed, OLCOM can be viewed as obtained from local confluence
(more precisely, local commutation) by enriching the latter with an ordering con-
straint on the lengths of the reductions: the length of the ‘left-reduction’ does
not exceed the length of the ‘right-reduction’. Note that gluing two such dia-
grams together in the usual way, yields a diagram again satisfying the ordering
constraint. We leave the study of these diagrams to future research. Below we
will treat the left disjunct of OLCOM, i.e. the case �ω b, as a ‘degenerate’ case.

Theorem 2. OLCOM(1,�) only if 1 is better than �. The reverse holds if 1 or
� is equal to → and → has unique normal forms.

Proof. ‘Only if’: We successively show the two implications OLCOM(1,�) ⇒
B(1,�), 1 is bounded by �, and B(1,�) ⇒ 1 is better than �. In a diagram:

≤−m′+n
≤≤

OLCOM betterstep for
induction

⇒ ⇒

m IH

≤−(1+m)+(1+n)

IH n

n′ ≤ m′
OLCOM m nB

≤−m+n

Here B(1,�) is defined as: for each b �m a �n c with c in normal form, b �≤−m+n

c. We show it holds by induction on n, assuming OLCOM(1,�). If m = 0, it is
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trivial. Otherwise, a �= c as �,1-normal forms coincide, so b �m b′ � a � c′ �n c.
By OLCOM(1,�) either �ω c′ or b′ �n′

d �m′
c′ for some d and n′ ≤ m′.

The former cannot hold as it would ential d′ �n+1 c′ �n c for some d′, so by
the induction hypothesis d′ �−1 c, which cannot be. In case of the latter the
induction hypothesis can be applied to d �m′

c′ �n c, yielding a reduction d �k c
with k ≤ −m′ + n. Since n′ + k ≤ n′ + −m′ + n ≤ n, the induction hypothesis
can be applied to b �m b′ �n′

d �k c, yielding a reduction b �� c bounded in
length by −m+ n′ + k ≤ −m+ n = −(1 +m) + (1 + n).

To show the second implication, let R, S be maximal 1-, �-reductions from
a. If S is infinite, there is nothing to prove. Otherwise, it is finite and ends by
maximality in some normal form, say it has length n and ends in c. Then n is
an upper bound on the length of R, since the length of a mediating reduction as
required by B(1,�) can only be non-negative, and by maximality R ends in c.

‘If’: Let b � a � c and split cases depending on whether → = 1 or � = →.
If → = 1, let R and S be obtained by extending a 1 b and a � c by maximal

�-reductions. If S is infinite, then the left disjunct of OLCOM(1,�) holds by
viewing the �-steps in the extension part of S as 1-steps, using that � was
assumed a strategy for → = 1. If S is finite, it ends by maximality in some
normal form, say d. Now viewing the �-steps in the extension part of R as 1-
steps, and using the assumption that 1 is better than �, yields that the length of
R does not exceed that of S. By maximality,Rmust end in a normal form, which
must be equal to d by uniqueness of normal forms. Hence the right disjunct of
OLCOM(1,�) holds via R, S.

If → = �, then we proceed dually by extending a 1 b and a � c by maximal
1-reductions, and subsequently viewing 1-steps as �-steps. 	


Combining Theorems 1 and 2 yields that OLCOM may be used to establish
both normalisation and minimality as well as perpetuality and maximality for
given strategies for an ARS →. Apart from being the first method to reduce
these global properties (universally quantifying over all reductions) to a local
property (OLCOM universally quantifies only over pairs of steps), the method
is even complete (it is applicable) in case → has unique normal forms.

We now illustrate the power of the method by giving uniform proofs of re-
sults for concrete rewrite systems from the literature, and by answering an open
problem. The first two examples concern normalisation and minimality, the next
two examples concern perpetuality and maximality, and the final one both.

Example 3. The innermost strategy for a TRS allows to contract only those
redexes in a term which are innermost among all redexes. For instance, in the
TRS with rules a→ b and d(x) → g(x, x), the innermost strategy only allows
to contract the a-redex in the term d(a). Intuitively, the innermost strategy is
efficient since it avoids duplication; the innermost reduction d(a) → d(b) →
g(b, b) is shorter than the non-innermost reduction d(a) → g(a, a) → g(b, a) →
g(b, b), since contracting the d-redex first causes duplication of the a-redex. The
catch is that the innermost strategy also avoids erasure; in the TRS with rules
a → f(a) and f(x) → b, an innermost reduction from f(a) only contracts a-
redexes and never reach the normal form b, whereas the latter could be reached
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efficiently, even in a single f -step, by erasing the a-redex. Combining these two
ideas results in a strategy due to Khasidashvili, here denoted by 1 and given by:

(internal needed strategy) contract an innermost redex among needed ones.

A redex is needed, in Huet and Lévy’s sense, if it must be reduced in any reduc-
tion to normal form; cf. [1, Sect. 9.4.7]. Note erasable redexes are not needed.

How to show that 1 is a normalising and minimal strategy for ordinary rewrit-
ing →, in case of an orthogonal TRS? We must first show that 1 is indeed a
strategy for →. This follows from the fact (due to Huet and Lévy) that in an
orthogonal TRS, any term not in normal form contains a needed redex, hence
also an innermost such (but since neededness is not computable, neither is 1).

To show normalisation and minimality of 1, it suffices by the theorem to show
OLCOM(1,→). This we show by a critical pair analysis, distinguishing cases on
the relative positions p, q of the redexes contracted in s �p t→q u:

(=) Then the steps are the same by orthogonality, so s = u and we conclude.
(‖) Then s→q v ←p u, for some term v. Since at least one of the residuals of
a needed redex is needed if it is not contracted itself, and by p ‖ q the needed
redex at p in t has a unique residual at p in u, that unique residual must
therefore be needed. Since the latter is also innermost among the needed
redexes in u (being needed or not was not changed for redexes below p), it
holds s→q v �p u, from which we conclude.

(<) Then q is non-needed since p was assumed to be the position of a re-
dex innermost among the needed ones. Consider a maximal 1-reduction R
extending t 1p s. Consider the projection S of R over the non-needed step
t →q u. Then S is a 1-reduction from u of exactly the same length as R.
This follows from the general theory of neededness, in particular from the
fact that contracting a non-needed redex can neither erase, nor duplicate,
nor create needed redexes. If R is infinite, then S is infinite as well so the
left disjunct of OLCOM(1,→) holds. Otherwise, R ends in a normal form
by maximality, hence S being its projection ends in the same normal form,
and the right disjunct of OLCOM(1,→) holds.

(>) Then s→q v � u for some v, obtained by projecting the steps over one
another. Per construction of the projection for orthogonal rewrite systems
(essentially going back to Church and Rosser), v � u is in fact a reduction
contracting the set of residuals of the redex at position p, which is a set
of disjoint positions in the case of TRSs, that is v �←−P u. Partitioning
P into sets of non-needed and needed residuals yields a decomposition of
v �←−P u as v �←− v′ �� u, with the 1-reduction being non-empty since p has
at least one needed residual in u as it was not contracted in t→q u. Finally,
consider a maximal 1-reduction R from v′. If R is infinite, the left disjunct
of OLCOM(1,→) holds. Otherwise R ends in a normal form, and, as before,
projecting R over v �←− v′ yields a reduction from v of exactly the same
length and ending in the same normal form, from which we conclude. 	


Since an orthogonal TRS is confluent, it has unique normal forms. Hence that
normalisation and minimality of the internal needed strategy are reducible to
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OLCOM(1,→) is clear by completeness of our method. The point of the examples
is rather to show that a clear methodology for proving OLCOM suggests itself:
the case-analysis required for OLCOM often resembles a critical pair analysis.

Remark 5. It would be interesting to have a critical pair lemma for strategies
corresponding to OLCOM in the same way Huet’s Critical Pair Lemma for TRSs
corresponds to local confluence. That requires a suitable strategy formalism.

Example 4. In multi-step rewriting, denoted by ◦−→, an arbitrary (non-zero)
number of redexes in a term may be contracted at the same time. For instance,
in the TRS with rules a→ b and d(x)→ g(x, x) as above, we have d(d(a)) ◦−→
d(g(b, b)) by contracting the inner d-redex and the a-redex at the same time. For
the notion of ‘contracted at the same time’ to make sense, the redexes need to
be consistent to each other. (E.g. what would it mean to contract both redexes
at the same time in the term f(g(a)) in the TRS with rules f(g(x))→ b and
g(a)→ c?) For orthogonal TRSs this is guaranteed giving a greedy strategy 1:

(full-substitution strategy) contract all redexes in the term simultaneously.

How to show that being greedy is best, i.e. that 1 is a normalising and minimal
strategy for multi-step rewriting ◦−→ in case of an orthogonal TRS? That 1 is a
strategy follows from orthogonality, since it guarantees that if some multi-step
exists, contracting all redexes makes sense/is possible, cf. [1, Def. 4.9.5(v)].

To show normalisation and minimality of 1, it suffices by the theorem to show
OLCOM(1, ◦−→). If s � t ◦−→ u, then the set of redexes contracted in the multi-
step t ◦−→ u is contained in the set of all redexes in t, by orthogonality. If the
sets are the same, then s = u and we are done. Otherwise, by standard residual
theory, s ◦←−P u where P is the set of residuals after t ◦−→ u of the set of all
redexes in t. If P is the set of all redexes in u, then in fact s � u and we are done
again. Otherwise, we conclude from s ◦−→ v � u, where s ◦−→ v contracts the set
of residuals after s ◦←−P u of the set of all redexes in u. 	


The proof in Example 4 goes through for the λ-calculus (the full-substitution
strategy is known there as Gross–Knuth reduction) and more generally to or-
thogonal higher-order pattern rewrite systems, as it only depends on a modicum
of residual theory (e.g. [1, Thm. 11.6.29] in the case of higher-order rewriting).

Example 5. The outermost strategy for a rewrite system allows to contract only
those redexes in a term which are outermost among all redexes. Intuitively, the
outermost strategy is inefficient since it promotes duplication; the outermost-
reduction d(a) → g(a, a) → g(b, a) → g(b, b) is longer than the non-outermost
reduction d(a) → d(b)→ g(b, b) in the TRS with rules a→ b and d(x)→ g(x, x).
One catch is that the outermost strategy also promotes erasure; in the TRS
with rules a→ f(a) and f(x)→ b, an outermost reduction from f(a) immedi-
ately reaches the normal form b, whereas it would be infinitely more inefficient
to repeat contracting a-redexes. Another catch is that outermost redexes may
turn into non-outermost redexes; although the rightmost a-redex in f(a, a) is
outermost for the TRS with rules a→ b, f(b, x)→ g(x, x), its contraction should
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be delayed if one strives for inefficiency, contracting instead the leftmost a-redex
(turning the rightmost a-redex into an innermost one) first and next the f -redex.
Combining these three ideas results in a strategy � due to Khasidashvili:

(limit strategy) contract an external redex which does not erase a reducible
argument, otherwise recur on such an argument; cf. [1, Sect. 9.5.1].

Externality is Huet and Lévy’s notion of a redex which remains outermost until
contracted. In the term f(a) above, the f -redex is external, but since contracting
it would erase its, reducible, argument a, the limit strategy recurs on it.

That � is a perpetual and maximal strategy for → was originally proven by
Khasidashvili for → being (generated by) an orthogonal Expression Reduction
System. Here, we give a proof via OLCOM(→,�) for the closely related formal-
ism of orthogonal fully-extended second-order pattern rewrite systems, i.e. the
restriction of Nipkow’s higher-order rewrite systems to rules with free variables
of second-order. That � is indeed a strategy for → holds since a term not in
normal form contains an outermost redex, and (generalising Huet and Lévy’s
result for TRSs) at least one among the outermost redexes is external.

To show OLCOM(→,�), we perform a critical pair analysis, distinguishing
cases on the relative positions p, q of the redexes contracted in s←p t �q u.

(=) Then s = u since at most one left-hand side matches a term. We conclude.
(‖) Then s →q v ←p u, for some term v. The step s →q v could only fail to
be a �-step, if contraction of q in t was due to a recursive call for some o
above it, which is blocked in s. This cannot be, as the residual of o in s still
erases the argument q is in. Hence s �q v ←p u.

(<) Then by definition of �, p is a redex erasing q and s←p u.
(>) Then by the diamond property for orthogonal multi-steps in PRSs [1,
Thm. 11.6.29], s →q v ◦←−P u for some v, where P is the set of residuals
of p after t �q u, which is non-empty since q is non-erasing. If s →q v is
non-erasing, then in fact s �q v ◦←−P u and we conclude since the non-
empty multi-step v ◦←−P u develops into a non-empty reduction v � u by
the Finite Developments Theorem [1, Thm. 11.5.11]. Otherwise,1 consider
a maximal �-reduction R from s obtained by first reducing each argument
erased by q in turn to its normal form. If this is finite, the redex at position
q has become a �-redex and we adjoin it to R, and let v be the resulting
term. Now consider performing for each descendant along t �q u of each
such an erased argument, the same steps as in R, and do this according to
the inside-order of these descendants in u. This guarantees that the resulting
reduction has at least the same length as R. (In the 3rd order case that may
fail, see the following remark.) Thus if R is infinite this yields an infinite
reduction from u as well, and we are done. Otherwise, this yields a reduction
ending in v by [1, Thm. 11.6.29] and we conclude again. 	


The limit strategy need not be maximal nor perpetual for third-order systems:
1 An example of this in λ-calculus is (λx.y)N ← (λx.(λz.y)x)N � (λz.y)N ; we first

should �-reduce N to normal form, say N ′, before to proceed with (λx, y)N ′ � y.
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Remark 6. Consider t = f(G.g(x.G(x))) in the orthogonal fully-extended third-
order rewrite system:

a→ b g(x.G(x))→G(a) f(G.H(G))→H(y.c)

Starting with contracting the head-redex-pattern yields t � g(x.c) � c. Observe
how contracting the head-redex makes the inside g-redex erasing (something
impossible in second-order systems) and that contracting the latter first yields
a longer reduction: t→ f(G.G(a)) → f(G.G(b)) → c.

Example 6. Leftmost-outermost redexes are external in λβ-calculus. Therefore

(F∞ ) contract a leftmost-outermost redex which does not erase a reducible
argument, otherwise recur on such an argument.

is a limit strategy, hence maximal and perpetual by the above; cf. [5, Thm. 11]. As
on λI-terms the leftmost-outermost strategy is F∞, it is maximal and perpetual;
cf. [6, Proposition 3.17]. What about F∞ for λ-calculi with explicit substitutions?

The λx−-calculus of [7] is a λβ-calculus with explicit substitution operator
〈 := 〉, and rules (of which only the third, not the first, is erasing (N)!):

(λx.M)N →M〈x:=N〉
x〈x:=N〉 → N (λy.M)〈x:=N〉 → λy.M〈x:=N〉
y〈x:=N〉 → y (M1M2)〈x:=N〉 →M1〈x:=N〉M2〈x:=N〉

As any reducible term has a leftmost-outermost redex, the ARS � induced by F∞
is a strategy for the ARS → induced by λx−. Since λx− is a second-order rewrit-
ing system [8, Def. 13], to show OLCOM(→,�) it suffices to adapt the analysis
of Example 5. The only property of externality we employed there was that it is
preserved for residuals (if any). As that also holds for leftmost-outermostness in
λx−, it suffices to supplement the case-analysis with the (unique) critical pair:

C[M〈x:=N〉〈y:=P 〉]←p C[((λx.M)N)〈y:=P 〉] �q C[(λx.M)〈y:=P 〉N〈y:=P 〉]

We reason as for (>) in Example 5. In particular, we simulate any �-reduction
R from the term s on the left by a reduction S from the term u on the right,
which is at least as long. To that end, we first reduce u one step further to
u′ = C[M〈y:=P 〉〈x:=N〈y:=P 〉〉]. After that, simulation of R by S is redex-
wise: By definition of F∞, a 〈x:=N〉〈y:=P 〉-closure is only ever distributed (over
λ or @) in its entirety in R, which can be simulated in S by distributing the
〈y:=P 〉〈x:=N〈y:=P 〉〉-closure. In case a 〈x:=N〉〈y:=P 〉-closure is being applied
to a variable in R, its simulation in S is defined by cases on the variable:

(x) Then x〈x:=N〉〈y:=P 〉 � N〈y:=P 〉 ←2 x〈y:=P 〉〈x:=N〈y:=P 〉〉.
(y) Then y〈x:=N〉〈y:=P 〉 �i y〈x:=N ′〉〈y:=P 〉 � y〈y:=P 〉 � P �j P ′ where
N ′,P ′ are the normal forms of N ,P (if any). This can be simulated by
y〈y:=P 〉〈x:=N〈y:=P 〉〉 →i y〈y:=P 〉〈x:=N ′〈y:=P 〉〉 →P 〈x:=N ′〈y:=P 〉〉 →j

P ′〈x:=N ′〈y:=P 〉〉 →+P ′, using for the final reduction that neither the vari-
able x nor any closures occur in the normal form P ′.

(z) Analogous to the previous case ending in z (if at all) instead of P ′. 	
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This solves the open problem [9, Rem. 3.18]. The method can easily be adapted
to show maximality and perpetuality of F∞ for the λβη-calculus [5, Thm. 19].2

Remark 7. Termination proofs for typed λ-calculi (with explicit substitutions)
usually involve a ‘syntactic’ commutation property. The strategy F∞ allows to
factor this property out, giving rise to fully ‘semantic’ termination proofs.

We say → is ordered weak Church–Rosser (OWCR) if OLCOM(→,→). OWCR
entails → is self-better (Theorem 2) and if an object can be reduced to normal
form in n steps, then any strategy will do so (Theorem 1); in Newman’s ter-
minology [2, p. 226]: the end-form is reached by random descent. Inspired by
this, we say → has random descent (RD), if for each R:a↔∗ b with b in normal
form, all maximal reductions from a have length d(R) and end in b. Note that
for an ARS satisfying OWCR it suffices to prove normalisation to establish both
termination and (random descent) confluence; see [10] for an example of this.

Theorem 3 (Random Descent). OWCR ⇔ RD.

Proof. ‘Only if’: Setting 1 = → = �, we obtain OWCR ⇒ B(→,→) by using
the implication OLCOM(1,�) ⇒ B(1,�) in the proof of Theorem 2. Next,
we claim B(→,→) implies self-boundedness (SB), where SB states that for any
conversion R:a↔∗ b with b in normal form, there exists a→≤d(R) b. The claim
follows by an easy induction on the number of peaks in the conversion (analogous
to the way the Church–Rosser property is proven from confluence).

Having established SB, we prove RD. Let R:a ↔∗ b with b in normal form,
n = d(R) and consider a maximal reduction S from a. On the one hand, n is
an upper bound on the length of S, since otherwise there would be a reduction
S′:a→n+1 a′ hence a conversion to normal form S′−1 · R:a′ ↔∗ b with negative
distance −1, contradicting SB. Thus by maximality S ends in a normal form b′

which by SB for S−1 · R:b′ ↔∗ b reduces to b, so b′ = b. On the other hand, n is
a lower bound on the length of S, as else R−1 · S:b↔∗ b would be a conversion
to normal form having negative distance, contradicting SB.

‘If’: Let R:b ← a → c, and let S be a maximal reduction from c. If S is
infinite, we are done. Otherwise, it is finite and ends in a normal form, and we
conclude from RD using d(S) = d(R · S). 	


Instances of calculi for which random descent has been established and its con-
sequences used, abound in the literature, almost invariably proven in ad hoc
fashion. Some examples are linear λ-calculi [11, Cor. 3.4], [5, Prop. 33], spine
strategies for λ-calculus [6, Prop. 4.21], in/external strategies for orthogonal
TRSs [1], orthogonal string rewrite systems [12], orthogonal graph rewrite sys-
tems in particular Lafont’s interaction nets [13], and orthogonal process calculi
in particular those modelled by Stark’s concurrent transition systems [14].

Several local conditions sufficient for RD, generalizing [2, Thm. 2], have been
proposed in the literature, e.g. balanced weak Church–Rosser (BWCR [3,15])
balanced SCR [16], linear biclosed [8], and SCR≥1 [16]. However, none is complete

2 Only failure of preservation of leftmost-outermostness (λx.(λy.Kyx)x) requires care.
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as they all fail to cover the ARS a → b → c → d → c ← a, which does satisfy
OWCR. In fact, no global property had been explicitly identified before, but it
is the global property upon which all applications are seen to rely. For instance,
all results in [3,15] trivially generalise by replacing everywhere BWCR by RD.

Example 7. Let the ARS → have finite lists as objects and swapping of adjacent
elements in lists-which-are-not-sorted as steps. The strategy 1, which only swaps
elements which are out-of-order, so-called inversions, has random descent as fol-
lows from OWCR(1), the only interesting case being the critical pair schemati-
cally given by bca � cba 1 cab, which is completed as bca 1 bac 1 abc � acb � cab.
Since insertion sort is an instance of 1 which is Θ(n2), and OLCOM(1,→) follows
by an easy critical pair analysis, we conclude sorting-by-swapping is Ω(n2).

4 Comparing Strategies Existentially

We introduce our second (and third) way to compare strategies.

Henceforth it is assumed that → = � ∪ 1.

Definition 6. An ordered pair is a pair of maximal reductions from an object,
such that if the second ends, the first ends in the same object and is not longer.
R can be completed on the left (right) by S if S,R (R,S) is an ordered pair.

– 1 is existentially better than �, if every maximal �-reduction can be com-
pleted on the left by a 1-reduction.

– � is existentially worse than 1, if every maximal 1-reduction can be com-
pleted on the right by a �-reduction.

We drop de adverb ‘existentially’ if no confusion with the notion of better from
the previous section can arise. Clearly, both better and worse are quasi-orders,
but neither needs to be anti-symmetric (for the same reason as before).

Remark 8. For ARSs having unique normal forms, 1 being universally better
than � implies both 1 being existentially better than � and � being existentially
worse than 1 but not vice versa. Since our existential ways to compare strategies
are relativised with respect to the normal forms, whereas the universal way was
not, they are in general incomparable for ARSs not having unique normal forms.

The next goal is to reduce the global properties better and worse to local ones.

Definition 7. – → has left extraction (LE) if every finite maximal reduction
of shape � · 11 can be completed on the left by a reduction of shape 1 ·
.

– → has right extraction (RE) if every finite maximal reduction of shape 1 ·��
can be completed on the right by a reduction of shape � ·
.

The idea for LE is that to show 1 is better than →, it suffices that any initial
�-step can be ‘improved’ into a 1-step. The dual idea for RE will need extra
assumptions to work, i.e. to imply that � is worse than →, as shown by:
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a

RE holds but a 1ω cannot be completed on the right by � (� = 1 ∩�)

Remark 9. LE, OLCOM, RE are essentially the same diagram, the main differ-
ence residing in which sides are existentially quantified (left, bottom, right).

Lemma 1. →-non-termination implies �-non-termination, under the assump-
tions that a 1 ·�n implies a � · →n and that � is finitely branching (FB)

Proof. By FB and König’s Lemma, it suffices to show that for any →-reduction
there exists a �-reduction from the same object and of the same length. The
proof is by induction on the length of the →-reduction. The base case being
trivial, suppose it is of shape a→ a′ →n. By the induction hypothesis for a′ →n,
there exists a reduction a′ �n. If in fact a � a′, we are done. Otherwise, a 1 a′

and the assumption for a 1 a′ �n yields a � a′′ →n from which we conclude by
the induction hypothesis applied to a′′ →n. 	

Two sufficient conditions for the lemma are obtained by requiring on top of FB,
either RE with ‘finite’ removed from its definition, or [17, Lemma 7].

Theorem 4. If LE, then 1 is better than →. If RE, then � is worse than →,
under the assumptions of Lemma 1.

Proof. To prove the first item, let R be a maximal reduction from a. If R is
infinite, then we are done. Otherwise R is finite and we proceed by induction on
its length. The base case being trivial, suppose R is of shape a → a′ 
 b. By
the induction hypothesis for a′ 
 b, we get a′ 11 b which is no longer, so we are
done if in fact a 1 a′. Otherwise LE for a � a′ 11 b yields a 1 a′′ 
 b which is no
longer, so by the induction hypothesis for a′′ 
 b, a′′ 11 b which is no longer.

To prove the second item, note that if→ is non-terminating for a, then Lemma 1
yields an infinite �-reduction from a and we are done. Otherwise, we proceed as
in the first item, but by well-founded induction ordered by → on the source a of
R, exchanging longer with shorter, LE with RE, and 1 with �. 	

As a typical application of the above, we present a λ-calculus λ+ with non-
deterministic choice embodied by the rule M1 +M2 →Mi (cf. [18]).

Lemma 2. RE without ‘finite’ in its condition hold for � the F∞-strategy and 1
the reduction relation of λ+, with F∞ as for λ-calculus (Example 6) additionally
choosing for M1 +M2 either to recur on Mi if it is reducible, or to select Mi in
case the other argument is in normal form.

Proof. Let t 1p s �α be a maximal reduction and distinguish cases on whether
s is a normal form or not. If s is a normal form, we show t �q u 
 s, for some
u. If in fact t �p s this is trivial. Otherwise, the step t 1p s must be outermost
and all other redex-patterns in t must be below p and erased by the step. Then
for any t � t′ it holds t′ 1p s. If s is not a normal form, the reduction is of shape
t 1p s �q u �α .−1 for some u. It suffices to show that this entails t � · →+ u. Let
t = C[P ]p and distinguish cases on the relative positions of p,q.
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(≤) If P = (λx.M)N then either P is in fact a �-redex, or x does not occur
in M and N is not normal, thus N is erased and we proceed as above. If
P = M1 + M2 and, say, M1 is selected and then �-rewritten to M ′

1, then
t � C[M ′

1 +M2]p → u.
(
) If t �q then t �q ·
 u by [1, Thm. 11.6.22], where in fact the →-
reduction cannot be empty since �-steps cannot erase 1-steps. Otherwise,
contracting P turns the ‘q-branch’ of the greatest common predecessor o of
p, q in the term-tree, into an ‘F∞-branch’. This can only happen if either
the step was in fact a step to normal form of the ‘p-branch’, or if it created
the body of a β-redex at position o. In either case it is a �-step unless it
erases a non-normal argument N , but then we may proceed as before. 	


As any term contains only finitely many occurrences of +, 1 is finitely branching,
and by � ⊆ 1, � is so too. Thus by Theorem 4 � is worse than 1. This can be
useful to prove termination of typed subcalculi of λ+ via termination of F∞;
cf. Remark 7. We conclude with a case-study of abstract copying.

Definition 8. If � =
⋃

p �p, then � copies 1 if for b � a �p, either b �� ·�p a

or q exists with (a �p a
′ implies b �q · �+ a′, and b �q b

′ implies a �p · 1+ b′).

E.g. the outermost strategy copies →T for T = {f(x)→ g(x), f(x)→ h(x, x)}.
Theorem 5. If � copies 1, then � is worse than 1.

Proof. Let a0 �p and let a0 1 a1 1
α be maximal. It suffices to find a0 � b 1β

which is no shorter and ends in the same normal form if at all, as repeating this
on b leads to an ever growing �-reduction from a0, while preserving the property.

Setting p0 = p, construct a maximal sequence of indices pi such that (ai �pi a
′

implies ai+1 �pi+1 · �+ a′, and ai+1 �pi+1 b
′ implies ai �pi · 1+ b′). Look for the

first i for which pi+1 is not defined.
If it exists, then ai cannot be in normal form since ai �pi holds by induction on

i with base case a0 �p0 . Hence by maximality ai 1 ai+1 implying ai �pi bi 11 ai+1

for some bi. Per construction, there exists bi .−1 such that ai .−1 �pi .−1 bi .−1 1
+

bi. Continuing in this fashion by induction on i, yields a0 �p0 b0 (1+)i bi 11
ai+1 1

α .−i which is as desired.
If it doesn’t exist, then select an arbitrary step a0 �p0 b0. Per construction,

there exists b1 such that a1 �p1 b1 �
+ b0. Continuing in this fashion by induction,

yields a0 �p0 b0 1
+ b1 1

+ b2 1
ω which has the desired property. 	


It is easy to see that for TRSs the innermost strategy not only copies itself, but
also copies, hence by Theorem 5 is worse than, non-dup-generalized innermost
rewriting→ndg [17], generalizing all results on →ndg in [17] to the non-finitely
branching case. For another application of Theorem 5: any positional [1, p. 512]
innermost strategy copies the innermost strategy, hence termination of the for-
mer implies termination of the latter, simplifying [19, Thm. 6] and [20, Thm. 2].
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Abstract. Call-by-need lambda calculi with letrec provide a rewriting-
based operational semantics for (lazy) call-by-name functional languages.
These calculi model the sharing behavior during evaluation more closely
than let-based calculi that use a fixpoint combinator. However, currently
the knowledge about correctness w.r.t. observational equivalence of mod-
ifying the sharing in letrec-based calculi is full of gaps. In this paper we
develop a new proof method based on a calculus on infinite trees, gener-
alizing the parallel 1-reduction, for showing correctness of instantiation
operations. We demonstrate the method in the small calculus LRλ and
show that copying at compile-time can be done without restrictions. We
also show that the call-by-need and call-by-name strategies are equiva-
lent w.r.t. contextual equivalence. A consequence is correctness of all the
transformations like instantiation, inlining, specialization and common
subexpression elimination in LRλ. The result for LRλ also gives an an-
swer to unresolved problems in several papers and thus contributes to
the knowledge about deterministic calculi with letrec.

The method also works for a calculus with case and constructors, and
also with parallel or. We are also confident that the method scales up for
proving correctness of copy-related transformations in non-deterministic
lambda calculi if restricted to “deterministic” subterms.

1 Introduction

A good semantics that supports all phases from programming, compiling, verifi-
cation, and optimization to execution is indispensable for the reliable application
of a programming language. Extended lambda calculi are widely used to provide
operational semantics for programming languages, e.g. the semantics of non-
strict functional programming languages like Haskell [18] and Clean [19] can be
defined by a small-step (rewriting) reduction in a lambda calculus. An efficient
evaluation of programs in these languages is based on call-by-need evaluation
that implements call-by-name evaluation by exploiting sharing of subexpres-
sions in order to avoid multiple evaluation of the same subexpression. Hence
it is important to investigate lambda calculi having a possibility to represent
sharing of subexpressions, which is usually made explicit by let-expressions or
by recursive let-expressions [5,2,6,4,14].

F. Baader (Ed.): RTA 2007, LNCS 4533, pp. 329–343, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Reasoning about the semantics requires a notion of equality. Conversion equal-
ity is the classic variant, which is known to be inadequate, since not all use-
ful equations can be justified. Defining equality as observational equality, also
known as contextual equality, regards expressions as equal, if they cannot be
distinguished by all permitted observations, where contextual equality defines
as observation the convergence of C[s] for any context C, i.e. s, t are observa-
tionally equivalent, if for all contexts C: C[s] converges iff C[t] converges. This
is also the coarsest equality for this observation, and justifies correctness of a
maximal number of program transformations.

1.1 Call-by-Name, Call-by-Need and Lambda-Calculi with Let or
Letrec

An early and influential comparison between different implementations of lambda-
calculi was Plotkin’s [20] treatment of call-by-value, call-by-name strategies and
different abstract machines as implementations, where Plotkin used, besides con-
version, also contextual equivalence for comparing strategies and expressions. One
result in [20] is that call-by-value and call-by-name are essentially different in the
considered lambda calculi. Comparing these strategies with call-by-need leads as
a natural approach to extending the lambda-calculus syntax by let or letrec.
It is well-known that non-recursive let-expressions can be simulated by an ap-
plication (see e.g. [5]). It is also well-known that letrec has improved sharing
properties during reductions (see e.g. [2,12]), even better than an encoding using
the fixpoint combinator Y , and also allows in several cases to syntactically detect
non-termination during evaluation.

In calculi with sharing an important issue is in which cases an improvement
of sharing is permitted, or the contrary, which kind of unsharing is permitted,
perhaps to enable other program transformations. Note that in non-deterministic
calculi, arbitrarily modifying sharing is in general not correct, but correct in
special cases (see e.g. [16,17]). There are also undecided cases, for which the
issue of correctness is unsolved, see the letrec-calculi in [17,8]. In the deterministic
letrec-calculus treated in [24], the copy reduction is proved only correct if the
expression is not copied into an abstraction. The technical problem of showing
correctness of the general copy-transformation is that proofs based on diagrams
or rearranging the reduction do not work. Even the proofs that the restricted
copy-reduction, where only abstractions or variables are allowed to be copied, is
intricate and requires splitting the reduction and a complex measure on reduction
sequences [24,21].

There are several papers investigating the relationship between call-by-name
and call-by-need calculi (see e.g. [5,4,14]). Other work on lambda-calculi ex-
tended with letrec is centered around confluence, non-confluence or variants of
confluence of the reduction relation of the calculi [6,2,3]. A proof of the ob-
servational equivalence of a call-by-name and a call-by-need calculus with non-
recursive let is in [14], which also mentions at the very end an open question,
which can be reformulated as the question, whether a letrec-calculus with a
reduction that allows only to copy values is strong enough to show also that
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copying arbitrary expressions is correct. A similar question is also implicitly men-
tioned as unresolved in [4]. As far as we know, there is no proof for this equality
w.r.t. contextual equivalence for a calculus using recursive let and call-by-need
reductions.

The paper [10] provides a fully abstract denotational semantics for a deter-
ministic extended lambda-calculus with letrec, and a “referential transparency”
property is proved. This means for a small calculus similar to LRλ, that the
copy-transformation is correct w.r.t. contextual equality. The correctness of the
copy transformation for LRλ could be derived from this result, however, the
term representation in [10] presupposes the correctness of the transformation
C[s] → (letrec x = s in C[x]), which would require a correctness proof in
LRλ, and moreover, the denotational method does not support the comparison
of the different evaluation strategies. Also, it is not possible via using the re-
sult in [10] to resolve the open problem in [14,4], since these concern evaluation
strategies. It is also unclear whether Jeffrey’s denotational proofs can be used for
a calculus with case and constructors, since confluence does no longer hold (see
[6]), but his method is based on confluence properties; it is also far from obvious
how his methods could be adapted to non-deterministic call-by-need calculi with
letrec.

The work on letrec-calculi in [2] proves an equivalence of call-by-name and
call-by-need, however, for a non-maximal equivalence, i.e. one that distinguishes
more expressions than contextual equivalence, a corresponding example can be
found in [9]: there are two contextually equivalent lambda terms, λx.(x x) ∼c

λx.x (λy.x y), which have different Böhm-trees, and also different Levy-Longo-
trees. However, these terms are contextually equivalent in our calculus.

1.2 Structure and Result of This Paper

This paper demonstrates a new proof method by treating a tiny letrec-calculus
LRλ which is equipped with a normal order reduction and a contextual seman-
tics as definition of equality of expressions. First it defines the infinite trees
corresponding to the unrolling of expressions as in the 111-calculus of [11]. Then
reduction on the infinite trees is defined, where the basic rule is the beta-rule,
and the other rule ∞−→ is a generalization of the (parallel) 1-reduction (see [7]);
it can also be seen as an infinite development (see also [11]). It is shown that
convergence of expressions in the call-by-need lambda-calculus, as well as for
the call-by-name calculus is equivalent to convergence of beta-reduction on the
corresponding infinite trees. An essential step is the standardization lemma for
∞,∗−−→-reductions. Finally, as a corollary we obtain the correctness of the general
copy-rule in LRλ (see Theorem 4.10). The equivalence of the call-by-need letrec-
calculus LRλ with its call-by-name variant is proved in Theorem 5.8, which
solved an open problem mentioned in [4].

It is also shown as a spin-off that (cp) and (lll) are correct (see Theorems 4.10,
4.11); the proof of correctness of (lbeta) is omitted, but can be done by copying the
proofs in [24]. Our results imply that the calculus LRλ together with its contextual
equivalence is equivalent to the theory of the lazy lambda-calculus [1].
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As a summary, we have demonstrated that going via a calculus on infinite trees
is a successful and extendible method to resolve questions concerning correctness
of copy-related transformations in call-by-need letrec-calculi. We checked that
our purely operational method can be adapted to the extensions of the calculi
by case and constructors [23], and are confident that also for an extension by
non-deterministic operators it is possible to prove correctness of copy-related
transformations, for which currently there is no other proof method.

2 Syntax and Reductions of the Functional Core
Language LRλ

2.1 The Language and the Reduction Rules

We define the calculus LRλ consisting of a language L(LRλ) and its reduction
rules, presented in this section, the normal order reduction strategy and contex-
tual equivalence. The syntax for expressions E is as follows:
E ::= V | (E1 E2) | (λ V.E) | (letrec V1 = E1, . . . , Vn = En in E)
where E,Ei are expressions and V, Vi are variables. The expressions (E1 E2),
(λV.E), (letrec V1 = E1, . . . , Vn = En in E) are called application, abstraction,
or letrec-expression, respectively.

All letrec-expressions obey the following conditions: The variables Vi in the
bindings are all distinct. We also assume that the bindings in letrec are com-
mutative, i.e. letrecs with bindings interchanged are considered to be syntac-
tically equivalent. The bindings in letrec are recursive: I.e., the scope of xj in
(letrec x1 = E1, . . . , xj = Ej , . . . , xn = tn in E) is E and all expressions Ei for
i = 1, . . . , n. This fixes the notions of closed, open expressions and α-renamings.
Free and bound variables in expressions are defined using the usual conventions.
Variable binding primitives are λ and letrec. The set of free variables in an
expression t is denoted as FV (t). We will use positions in the Dewey decimal
notation to speak about tree addresses. For simplicity we use the distinct variable
convention: I.e., all bound variables in expressions are assumed to be distinct,
and free variables are distinct from bound variables. The reduction rules are
assumed to implicitly rename bound variables in the result by α-renaming if
necessary to obey this convention. Note that this is only necessary for the copy
rule (cp) (see below). We omit parentheses in nested applications: (s1 . . . sn)
denotes (. . . (s1 s2) . . . sn).

Sometimes we abbreviate the notation of letrec-expression (letrec x1 =
E1, . . . , xn = En in E), as (letrec Env in E), where Env ≡ {x1 = E1, . . . , xn =
En}. This will also be used freely for parts of the bindings. The set of variables
bound in an environment Env is denoted as LV (Env).

In the following we define different context classes and contexts. To visually
distinguish context classes from individual contexts, we use different text styles.
The class C of all contexts is the set of all expressions C from LRλ, where the
symbol [·], the hole, is a predefined context that is syntactically treated as an
atomic expression, such that [·] occurs exactly once in C. Given a term t and a
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(lbeta) ((λx.s) r) → (letrec x = r in s)
(cp-in) (letrec x = s,Env in C[x]) → (letrec x = s,Env in C[s])

where s is an abstraction or a variable
(cp-e) (letrec x = s,Env , y = C[x] in r) → (letrec x = s,Env , y = C[s] in r)

where s is an abstraction or a variable
(llet-in) (letrec Env1 in (letrec Env2 in r))

→ (letrec Env1,Env2 in r)
(llet-e) (letrec Env1, x = (letrec Env2 in sx) in r)

→ (letrec Env1,Env2, x = sx in r)
(lapp) ((letrec Env in t) s) → (letrec Env in (t s))

Fig. 1. Reduction Rules for Call-By-Need

context C, we will write C[t] for the expression constructed from C by plugging
t into the hole, i.e, by replacing [·] in C by t, where this replacement is meant
syntactically, i.e., a variable capture is permitted.

Definition 2.1. A value is an abstraction. We denote values by the letters
v, w. A weak head normal form (WHNF) is either a value, or an expression
(letrec Env in v), where v is a value.

The reduction rules in figure 1 are defined more liberally than necessary for the
normal order reduction, in order to permit an easy use as transformations.

Definition 2.2 (Reduction Rules of the Calculus LRλ). The (base) reduc-
tion rules for the calculus and language LRλ are defined in figure 1. The union
of (llet-in) and (llet-e) is called (llet), the union of (cp-in) and (cp-e) is called
(cp), and the union of (llet) and (lapp) is called (lll). Note that in the rule (cp-e)
the variables x, y may be equal, but if (cp-e) is used as a normal-order reduction
step (see below), then x �= y.

Reductions (and transformations) are denoted using an arrow with super-
scripts, e.g. llet−−→. To explicitly state the context in which a particular reduction is
executed we annotate the reduction arrow with the context in which the reduction
takes place. If no confusion arises, we omit the context at the arrow. The redex
of a reduction is the term as given on the left side of a reduction rule. Transitive
closure of reductions is denoted by a +, reflexive transitive closure by a ∗. E.g.
∗−→ is the reflexive, transitive closure of →.

2.2 The Unwind Algorithm

The following labeling algorithm (unwind) will detect the position to which a
reduction rule will be applied according to normal order. It uses three labels:
S, T, V , where T means reduction of the top term, S means reduction of a sub-
term, V labels already visited subexpressions, and S∨T matches T as well as S.
The algorithm does not look into S-labeled letrec-expressions. We also denote
the fresh V only in the result of the unwind-steps, and do not indicate the
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(lbeta) C[((λx.s)S r)] → C[(letrec x = r in s)]

(cp-in) (letrec x = sS,Env in C[xV ]) → (letrec x = s,Env in C[s])
where s is an abstraction or a variable

(cp-e) (letrec x = sS,Env , y = C[xV ] in r) → (letrec x = s,Env , y = C[s] in r)
where s is an abstraction or a variable

(llet-in) (letrec Env1 in (letrec Env2 in r)S)
→ (letrec Env1,Env2 in r)

(llet-e) (letrec Env1, x = (letrec Env2 in sx)
S in r)

→ (letrec Env1,Env2, x = sx in r)

(lapp) C[((letrec Env in t)S s)] → C[(letrec Env in (t s))]

Fig. 2. Normal Order Reduction Rules

already existing V -labels. For a term s the labeling algorithm starts with sT ,
where no subexpression in s is labeled. The rules of the labeling algorithm are:

(letrec Env in t)T → (letrec Env in tS)V

(s t)S∨T → (sS t)V

(letrec x = s,Env in C[xS ]) → (letrec x = sS ,Env in C[xV ])
if s was not labeled

(letrec x = s, y = C[xS ],Env in t)→ (letrec x = sS , y = C[xV ],Env in t)
if s was not labeled and if C[x] �= x

If unwind tries to label an already labelled subterm, then it fails. Otherwise,
and if no more rule is applicable, it succeeds. In any case, unwind terminates.
For example for (letrec x = x in x)T it will stop with (letrec x = xS in xV )V .

Definition 2.3 (Normal Order Reduction). A normal order reduction is
defined as the reduction at the position of the final label S, or one position higher
up, or copying the term from the final position to the position before, as indicated
in figure 2. A normal-order reduction step is denoted as n−→. Note that normal
order reduction is unique.

Definition 2.4. A normal order reduction sequence is called an (normal-order)
evaluation if the last term is a WHNF. Otherwise, i.e. if the normal order re-
duction sequence is non-terminating, or if the last term is not a WHNF, but has
no further normal order reduction, then we say that it is a failing normal order
reduction sequence.

For a term t, we write t⇓ iff there is an evaluation starting from t. We call
this the evaluation of t. If t⇓, we also say that t is converging (or terminating).
Otherwise, if there is no evaluation of t, we write t⇑.

Definition 2.5 (contextual preorder and equivalence). Let s, t be terms.
Then:

s ≤c t iff ∀C[·] : C[s]⇓ ⇒ C[t]⇓
s ∼c t iff s ≤c t ∧ t ≤c s
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3 Reductions on Trees

In the following we use “expression” for finite expressions including letrec, and
“tree” for the finite or infinite trees, which are only built from applications,
abstractions and variables.

The infinite tree corresponding to an expression is intended to be the letrec-
unfolding of the expression with the extra condition that cyclic variable chains
lead to local nontermination, represented by the symbol ⊥. This corresponds to
the infinite trees in the 111-variant of the calculus in [11]. A rigorous definition
is as follows, where we use the explicit binary application operator @, since it is
easier to explain, but stick to the common notation in examples.

Definition 3.1. Given an expression t, the infinite tree IT (t) of t is defined
by giving an algorithm to compute for every position p the label of the infinite
tree at position p, where the algorithm starts with t|p, where by a slight abuse of
notation, the notation r|p is used as a label. The algorithm uses the rules below
to move the label r|p around within t. The computation is successful, iff the label
is r|ε and the conditions below hold. If the computation does not terminate, then
it is not successful, and the result is undefined with the following exception: If the
position ε hits the same (let-bound) variable twice, using the rules below, then
the result is ⊥.

The computed term-label for the position ε is as follows:

C[(@ s t)|ε] �→ @
C[x|ε] �→ x if x is a free or a lambda-bound variable
C[(λx.s)|ε] �→ λx

In general, we proceed using the rules below:

C[(λx.s)|1.p] → C[λx.(s|p)]
C[(@ s t)|1.p] → C[(@ s|p t)]
C[(@ s t)|2.p] → C[(@ s t|p)]
C[(letrec Env in r)|p] → C[(letrec Env in r|p)]
C1[(letrec x = s,Env in C2[x|p])]→ C1[(letrec x = s|p,Env in C2[x])]
C1[(letrec x = s, y = C2[x|p],Env in r)]

→ C1[(letrec x = s|p, y = C2[x],Env in r)]

The equivalence of trees is syntactic, where α-equal trees are assumed to be
equivalent. A tree of the form λx.s is called a value.

Example 3.2. The expression letrec x = x, y = (λz.z) x y in y has the corre-
sponding tree ((λz.z) ⊥ ((λz.z) ⊥ ((λz.z) ⊥ . . .))).

Definition 3.3. Reduction contexts R for (infinite) trees are defined by R ::=
[·] | (@ R E), where E means a tree.

Lemma 3.4. Let s, t be expressions and C be a context. Then IT (s) = IT (t) ⇒
IT (C[s]) = IT (C[t]).
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Lemma 3.5. Let s, t be expressions and s → t by (cp) or (lll). Then IT (s) =
IT (t).

Definition 3.6. (betaTr) is the only reduction rule on trees. It is allowed in any
tree-context.

(betaTr) ((λx.s) r) → s[r/x]

If the reduction rule is applied within an R-context, we will call it an R-
reduction on trees. A sequence of R-reductions of T that terminates with a value
tree is called evaluation. If T has an evaluation, then we also say T converges
and denote this as T⇓.

Note that (betaTr) as a reduction may modify infinitely many positions, since
there may be infinitely many positions of the variable x. E.g. a top-level (betaTr)
of IT ((λx.(letrec z = (z x) in z)) r) = (λx.((. . . (. . . x) x) x)) r modifies the
infinite number of occurrences of x. Further note that (betaTr) does not overlap
with itself, where we ignore overlaps within the meta-variables s, r.

Lemma 3.7. Let s be an expression and let IT (s) be a value tree. Then s⇓.

We will use a variant of infinite outside-in developments [7,11] as a reduction
on trees that may reduce infinitely many redexes in one step, which can also be
seen as a generalization of the 1-reduction to infinite trees. For a more detailed
definition, in particular concerning the labeling, see [22]. The idea is that a single
reduction (lbeta) of a single redex in an expression is mirrored as reducing a
perhaps infinite set of redexes in the corresponding infinite tree.

Definition 3.8. For trees S, T , we define the reduction S
∞−→ T as a gener-

alization of the (parallel) 1-reduction (see [7]) as follows. We mark a possibly
infinite subset of all (betaT r)-redexes in S, say with a † (the subset may also be
empty). The reduction constructs a new infinite tree top-down by iteratedly using
labelled reduction, where the label of the redex is removed before the reduction. If
the reduction does not terminate for a subtree at its top level, then this subtree
is the constant ⊥ in the result. This recursively defines the result tree top-down.
We write T⇓(∞) if T

∞,∗−−→ T ′, where T ′ is a value tree.

The reduction S
∀,∞−−−→ T is defined as the specific S ∞−→ T -reduction, if all

(betaT r)-redexes in S are labeled.

Note that even for a tree with only two marked redexes, it is possible that after
the first reduction during construction of the result tree, infinitely many redexes
are labeled.

Example 3.9. We give two examples for a ∞−→-reduction:

– t = (λz.letrec y = λu.u, x = (z (y y) x) in x). The infinite tree IT (t) is
like an infinite list, descending to the right, with elements ((λu.u) λu.u). The
∞-reduction may label any subset of these redexes, even infinitely many, and
then reduce them by (betaTr).
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– t = (letrec x = λy.x (λu.u) in x) has the infinite tree (λy.(λy.(λy. . . .)
(λu.u) (λu.u)) (λu.u)) which, depending on the labeling, may reduce to

itself, or, if all redexes are labeled, it will reduce to ⊥, i.e., t
∀,∞−−−→ ⊥.

Lemma 3.10. For all trees S,R, T : if S ∞−→ R where the set of redex positions
is MR, and S ∞−→ T , where the the set of redex positions is MS, and MS ⊆MR,
then also T

∞−→ R. A special case is that S
∀,∞−−−→ R, and S

∞−→ T imply that
T

∞−→ R.

S

MR,∞
��

MS ,∞ �� T

∞
��� � � � � � � S

∀,∞
��

∞ �� T

∞
��� � � � � � �

R R

Proof. The argument is that we can mark the (betaT r)-redexes in S that are not

reduced in S
MS ,∞−−−−→ T . Reduce all MR-labeled redexes in the reduction T ∞−→ R.

In the extended version [22] it is shown:

Theorem 3.11 (Standardization for tree-reduction). Let S be a tree. Then
S⇓(∞) implies S⇓.

Proof. (very short sketch) The main idea of the proof is that it is sufficient to
reduce only a finite number of positions in S by (betaTr) to reach some value.
This is done by reorganizing and commuting reduction sequences, until an R-
evaluation is obtained, where reductions that are “too deep” are not performed.

4 Properties of Call-by-Need Convergence

4.1 Call-by-Need Convergence Implies Infinite Tree Convergence

Lemma 4.1. If s lbeta−−−→ t for two expressions s, t, then IT (s) ∞−→ IT (t).

Proof. We label every redex of IT (s) that is derived from the redex correspond-
ing to s lbeta−−−→ t. If the redex in s is ((λx.s′) r′) and s′ is not a variable, then the
lemma is obvious. The only nontrivial case is that s′ is a variable and the subex-
pression is e.g. of the form (letrec Env , y2 = y1, y1 = ((λx.y2) r′) in s′), and
after the (lbeta)-reduction, and perhaps some (lll)-reductions, y2 is in a cyclic
chain of variables like (letrec Env , y2 = y1, y1 = y2, x = r′ in s′). In this case
the tree-reduction of the redex corresponding to y1 does not terminate during
computing the development, and hence the result will be ⊥.

Proposition 4.2. Let t be an expression. Then t⇓ ⇒ IT (t)⇓.

Proof. That IT (t)⇓(∞) holds follows from Lemma 4.1 by induction on the length
of evaluation of t, from Lemma 3.5 and from the fact that a WHNF has a value
tree as corresponding infinite tree. Then Theorem 3.11 shows that IT (t)⇓(∞)
implies also IT (t)⇓.
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4.2 Infinite Tree Convergence Implies Call-by-Need Convergence

Now we show the harder part of the desired equivalence in a series of lemmas.

Lemma 4.3. For every reduction possibility S1
R←− T

∞−→ S2, either S1
∞−→ S2

or there is some T ′ with S1
∞−→ T ′ R←− S2. I.e. we have the following forking

diagrams for trees between an R-reduction and an ∞−→-reduction:

T
∞ ��

R
��

S2

R
���
�
� T

∞ ��

R
��

S2

S1
∞ ����� T ′ S1

∞

11�
�

�
�

Proof. This follows by checking the overlaps of ∞−→ with R-reductions.

Lemma 4.4. Let T be a tree such that there is an R-evaluation of length n, and
let S be a tree with T ∞−→ S. Then S has an R-evaluation of length ≤ n.

Proof. Follows from Lemma 4.3 by induction.

Lemma 4.5. Let t be a term and let T := IT (t)
(betaTr)−−−−−→ T ′ be an R-reduction.

Then there is an expression t′, a reduction t
n,∗−−→ t′ using (lll) and (cp)-reductions,

an expression t′′ with t′
n,lbeta−−−−→ t′′, such that there is a reduction T ′ ∞−→ IT (t′′).

t
IT(·) ��

n,(cp)∨(lll),∗
���
�
� T

R,betaTr

��
∞

22

� � � �
�
�

�
��


t′

IT (·)
����������

n,lbeta

���
�
� T ′

∞
���
�
�

t′′
IT(·) �������� IT (t′′)

Proof. The expressions t′, t′′ are constructed as follows: t′ is the resulting term
from a maximal normal-order reduction of t consisting only of (cp) and (lll)-

reductions. It is clear that such a sequence of
(cp)∨(lll),n−−−−−−−→-reductions is termi-

nating. Then IT (t) = IT (t′) by Lemma 3.5. The unique normal-order (lbeta)-

redex in t′ must correspond to T
R,(betaTr)−−−−−−−→ T ′ and is used for the reduction

t′
n,lbeta−−−−→ t′′. Note that the (lbeta)-redex in t′ may correspond to infinitely many

redexes in T . Lemma 4.1 shows that there is a reduction T
∞−→ IT (t′′), and

Lemma 3.10 shows that also T ′ ∞−→ IT (t′′).

Proposition 4.6. Let t be an expression such that IT (t)⇓. Then t⇓.

Proof. The precondition IT (t)⇓ implies that there is an R-evaluation of IT (t)
to a value tree. The base case, where no R-reductions are necessary is treated
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in Lemma 3.7. In the general case, let T
(betaTr)−−−−−→ T ′ be the unique first R-

reduction of a single redex. Lemma 4.5 shows that there are expressions t′, t′′

with t
n,(cp)∨(lll),∗−−−−−−−−→ t′

n,lbeta−−−−→ t′′, and T ′ ∞−→ IT (t′′). Lemma 4.4 shows that the
number of R-reductions of IT (t′′) to a value tree is strictly smaller than the
number of R-reductions of T to a value. Hence we can use induction on this
length and obtain a normal-order reduction of t to a WHNF.

Convergence is equivalent for a term and its corresponding infinite tree:

Theorem 4.7. Let t be an expression. Then t⇓ iff IT (t)⇓.

Proof. This follows from Propositions 4.2 and 4.6.

Definition 4.8. Let the generalized copy rule be:
(gcp) C1[letrec x = r . . . C2[x] . . .]→ C1[letrec x = r . . . C2[r] . . .]

This is just like the rule (cp), but all kinds of terms r can be copied, not only
abstractions. Obviously the following holds:

Lemma 4.9. If s
gcp−−→ t, then IT (s) = IT (t)

Theorem 4.10. Let s, t be expressions with s
gcp−−→ t Then s ∼c t.

Proof. Lemma 3.4 shows that it is sufficient to show equivalence of termination
of s, t. Lemma 4.9 implies IT (s) = IT (t). Hence equivalence of termination
follows from Theorem 4.7.

Theorem 4.11. Let s, t be expressions with s lll−→ t Then s ∼c t.

Proof. Follows in the same way as in the proof of Theorem 4.10 using Lemma
3.5.

5 Relation Between Call-by-Name and Call-by-Need

For the same language we now treat the call-by-name variant of the reduction
strategy using beta-reduction instead of the rule (lbeta) that respects sharing.

Definition 5.1. The call-by-name normal-order reduction is defined by replac-
ing the (lbeta)-reduction in the call-by-need normal-order reduction by (beta):

(beta) ((λx.s) r) → s[r/x]

where the same redex is used. We denote the reduction as name−−−→, the correspond-
ing call-by-name convergence of a term t as t⇓(name), and the corresponding
contextual preorder and equivalence as ≤c,name and ∼c,name, respectively.

Note that for a ∈ {(lll), (cp)} the relation
n,a−−→ is the same as

name,a−−−−−→. However,
we could also define other call-by-name-variants with unrestricted copy.

We give an example showing that the call-by-name evaluation and the call-
by-need evaluation may have essentially different infinite tree evaluations.
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Example 5.2. We start with the term (letrec z = (λx.(λy.x)) (z z) in z z).
The call-by-need normal order reduction is as follows:

lbeta−−−→ (letrec z = (letrec x = z z in λy.x) in z z)
lll−→ (letrec z = λy.x, x = z z in z z)
cp−→ (letrec z = λy.x, x = z z in (λy.x) z)
lbeta−−−→ (letrec z = λy.x, x = z z in (letrec y = z in x))
lll−→ (letrec z = λy.x, x = z z, y = z in x)
cp−→ (letrec z = λy.x, x = (λy′.x) z, y = z in x)
lbeta−−−→ (letrec z = λy.x, x = (letrec y′ = z in x), y = z in x)
lll−→ (letrec z = λy.x, x = x, y′ = z, y = z in x)

Thus it fails. The call-by-name normal order reduction loops, where the first
reduction gives (letrec z = (λy.(z z)) in z z), which immediately starts a loop
using (beta) and (cp)-reductions.

Thus the call-by-name and call-by-need reductions have a different trace of
infinite trees, hence an easy correspondence proof of the reductions is not pos-
sible. Witnesses are the expressions s1 = (letrec z = (λy.(z z)) in z z) and
s2 = (letrec z = λy.x, x = (λy′.x) z, y = z in x) that have the same infinite
tree, and the call-by-name reduction of s1 gives an expression with the same
infinite tree, whereas the call-by-need reduction of s2 results in the tree ⊥.

5.1 Call-by-Name Convergence Implies Infinite Tree Convergence

Lemma 5.3. If s beta−−→ t for two expressions s, t, then IT (s) ∞−→ IT (t).

Proof. Easy, since beta−−→ and lbeta−−−→ result in the same tree.

Proposition 5.4. Let t be an expression. Then t⇓(name) ⇒ IT (t)⇓.

Proof. This follows from Lemma 5.3 by induction on the length of the call-by-
name evaluation of t, from Lemma 3.5 using the standardization theorem 3.11
and from the fact that a WHNF has a value tree as corresponding infinite tree.

5.2 Infinite Tree Convergence Implies Call-by-Name Convergence

Now we show the desired implication also for call-by-name.

Lemma 5.5. Let t be a term and let T := IT (t)
(betaTr)−−−−−→ T ′ be an R-reduction.

Then there is an expression t′, a reduction t
n,∗−−→ t′ using (lll) and (cp)-reductions,

an expression t′′ with t′
name,beta−−−−−−→ t′′, such that there is a reduction T ′ ∞−→ IT (t′′).
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t
IT(·) ��

n,(cp)∨(lll),∗
���
�
� T

R,betaTr

��
∞

22

� � � �
�
�

�
��


t′

IT (·)
����������

name,beta

���
�
� T ′

∞
���
�
�

t′′
IT(·) �������� IT (t′′)

Proof. The expressions t′, t′′ are constructed as follows: t′ is the resulting term
fromamaximal normal-order reduction consisting only of (cp) and (lll)-reductions.

It is clear that such a sequence of
(cp)∨(lll),n−−−−−−−→-reductions is terminating. Then

IT (t) = IT (t′) by Lemma 3.5. The unique normal-order (beta)-redex in t′ cor-

responding to T
(betaTr)−−−−−→ T ′ is used for the reduction t′

name,beta−−−−−−→ t′′. Note that
the (beta)-redex in t′ may correspond to infinitely many redexes in T . Lemma
5.3 shows that there is a reduction T

∞−→ IT (t′′), and Lemma 3.10 shows that
also T ′ ∞−→ IT (t′′).

Proposition 5.6. Let t be an expression such that IT (t)⇓. Then t⇓(name).

Proof. The precondition IT (t)⇓ means that there is an R-evaluation of T :=
IT (t) to a value tree. The base case, where no R-reductions are necessary is

treated in Lemma 3.7. In the general case, let T
(betaTr)−−−−−→ T ′ be the unique first

R-reduction of a single redex. Lemma 5.5 shows that there are expressions t′, t′′

with t
n,(cp)∨(lll),∗−−−−−−−−→ t′

name,beta−−−−−−→ t′′, and T ′ ∞−→ IT (t′′). Lemma 4.4 shows that
the number of R-reductions of IT (t′′) to a value tree is strictly smaller than the
number of R-reductions of T to a value. Hence we can use induction on this
length and obtain a call-by-name normal-order reduction of t to a WHNF.

Now we can show that call-by-name termination for a term is equivalent to
convergence of its corresponding infinite tree.

Theorem 5.7. Let t be an expression. Then t⇓(name) iff IT (t)⇓.

Proof. Follows from Propositions 5.4 and 5.6.

The strategies call-by-need and call-by-name are equivalent:

Theorem 5.8. The contextual preorders for call-by-need and call-by-name are
equivalent.

Proof. This follows from Theorems 4.7 and 5.7.

5.3 Relation to the Lazy Lambda Calculus

Without explicit proof, let us remark that our results imply that the calculus
LRλ together with its contextual equivalence is equivalent to the theory of the
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lazy lambda-calculus [1]: The lazy lambda calculus as presented in [1] is an
untyped lambda calculus with a normal order reduction, abstractions as the
outcome of reductions, and it is equipped with a contextual equivalence. Our
result shows that w.r.t. contextual equivalence, the letrec-expressions can be
expressed using the fixpoint operator Y , and since also the contexts correspond,
there is one-to-one correspondence between the expressions that respects the
contextual preorders in the respective calculi.

6 Conclusion

We demonstrated the proof method via infinite trees by showing correctness of an
unrestricted copy-reduction and the equivalence of call-by-name and call-by-need
for a tiny deterministic letrec-calculus LRλ. We have checked that the method
also works in letrec-calculi extended by constructors and case-expressions [23],
and are sure that it can be applied to the letrec-calculi from [5,2,6,4,14], if
contextual equivalence as equality is adopted, which appears to cover all the
desired equalities in these calculi. It could also be applied to the record calculus
in [13] after specializing meaning-preservation to contextual equivalence. This
shows that the proof method using infinite trees that we have successfully applied
has a great potential in exhibiting correctness of variants of copy-transformations
in different kinds of calculi with cyclic sharing mechanisms.

For non-deterministic calculi like [16,15,21] we plan to extend the method to
show correctness of the copy-reduction for deterministic subexpressions, which
appears to be a hard obstacle for other methods.
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Abstract. Medial is an inference rule scheme that appears in various
deductive systems based on deep inference. In this paper we investigate
the properties of medial as rewriting rule independently from logic. We
present a graph theoretical criterion for checking whether there exists a
medial rewriting path between two formulas. Finally, we return to logic
and apply our criterion for giving a combinatorial proof for a decompo-
sition theorem, i.e., proof theoretical statement about syntax.

1 Introduction

An interesting question to ask about a given rewriting system is not only whether
it is terminating or confluent, but also whether there is a rewriting path between
two given terms. This question occurs, for example, in proof search, where one is
interested in finding a proof for a formula P , i.e., a rewriting path from “truth”
to P using the inference rules of the deductive system. Alternatively, one can ask
for a refutation of P , which is nothing but a rewriting path from P to “falsum”,
where the meanings of “truth” and “falsum” depend on the logic in question.

The next natural question to ask is whether we can characterize the existence
of a rewriting path between two given terms independently from the rewriting
system. For example in [BdGR97], a rewriting system was presented which could
be characterized by the inclusion relation of series-parallel orders. Other well-
known examples of such characterizations are the various correctness criteria for
proof nets for multiplicative linear logic (e.g., [DR89, Ret96, DHPP99, Str03a]).

The work presented in this paper is in line with these results. The rewriting
system that we analyze consists only of the medial rule [BT01], which plays an
increasing role in the proof theory for classical propositional logic, in particular,
in the investigation of the identity of proofs [Str05] and for giving semantics
to proofs [Lam06]. Our characterization will be carried out in terms of relation
webs [Gug07], and is in spirit very close to the work in [BdGR97].

This paper is organized as follows: In the next section we will first explain
informally what the medial rule is. Then, in Sections 3 and 4, we will set the
stage by formally defining our rewrite system and by introducing the notion of
relation web. The main part of the paper is Section 5, in which we prove our
main result. The remaining sections compare the result to related work and show
an application in proof theory.
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2 What is Medial ?

Let • and ◦ be two binary operations and consider the equation

(x • y) ◦ (w • z) = (x ◦ w) • (y ◦ z) , (1)

which is known under the name “middle four exchange” [Mac71]. If we consider
• as “horizontal” composition and ◦ as “vertical” composition, we can give (1)
the following geometric interpretation:

x y

w z
=

x y

w z
=

x y

w z

Let us now assume that one of • and ◦ is stronger, in the sense that the equa-
tion (1) gets a direction and becomes a rewriting rule

(x • y) ◦ (w • z)→ (x ◦ w) • (y ◦ z) . (2)

If we read • as “and” ∧ and ◦ as “or” ∨, then (2) becomes a valid implication
of Boolean logic

(x ∧ y) ∨ (w ∧ z)→ (x ∨w) ∧ (y ∨ z) . (3)
while the other direction would not yield a valid implication. The same situation
appears in linear logic if we let 〈•, ◦〉 be any of the pairs 〈�,�〉, 〈�,�〉, 〈	,�〉,
〈	,�〉, or 〈	,�〉. In [BT01], the implication (3) is used as an inference rule in
a deductive system for classical logic

F{(A ∧C) ∨ (B ∧D)}
m
F{(A ∨B) ∧ (C ∨D)}

, (4)

where A, B, C, D stand for arbitrary formulas and F{ } for an arbitrary (posi-
tive) formula context. Note that (3) and (4) are just different ways of writing the
same thing. In [BT01], Brünnler and Tiu gave the name medial to the rule (4).
They observed that under the presence of the medial rule, the general contraction
rule can be reduced to an atomic version:

F{A ∨A}
c

F{A}
� F{a ∨ a}

c
F{a}

, (5)

where A is an arbitrary formula and a is just an atom (or literal). In [Str02], the
same has been observed for linear logic.

3 Rewriting with Medial

We have in our language two binary function symbols and a countable set A =
{a, b, c, . . .} of constant symbols. The set T of terms is defined by the grammar

T ::= A | (T •T ) | [T ◦T ]

For the two binary function symbols we use infix notation. To ease the read-
ability, we use different types of parentheses: (. . .) for the • and [. . .] for the ◦.1

1 Note that this goes in line with the usual notation used in the literature on deep
inference, e.g., [BT01, GS01, DG04].
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We will use capital Latin letters to denote terms. To ease readability, we will
sometimes write (x • y • z) for ((x • y) • z) and [x ◦ y ◦ z ] for [ [x ◦ y ] ◦ z ].

Let AC be the following set of equations on terms, saying that • and ◦ are
both associative and commutative:

(x • y) ≈ (y • x) ((x • y) • z) ≈ (x • (y • z))
[x ◦ y ] ≈ [y ◦ x] [ [x ◦ y ] ◦ z ] ≈ [x ◦ [y ◦ z ] ]

(6)

where x, y, and z are variables. Let ≈AC be the equational theory induced by
AC, i.e., the smallest congruence relation containing AC.

Now let M be the rewriting system consisting only of the medial rule
[(x • y) ◦ (w • z)] → ([x ◦ w] • [y ◦ z ]) , (7)

where x, y, z, and w are variables. The object of interest in this paper is the
rewrite relation →M/AC, i.e., rewriting via the medial rule modulo associativity
and commutativity of the two binary operations. More formally: Let P and Q
be terms. Then P →M/AC Q, if and only if there are terms P ′ and Q′ such that
P ≈AC P

′ and P ′ →M Q′ and Q′ ≈AC Q, where P ′ →M Q′ means there is a single
rewriting step from P ′ to Q′ using the rule in (7). For more details on the formal
definitions see, e.g, [BN98]. Since no ambiguity is possible here, we omit the index
AC and simply write P ≈ Q instead of P ≈AC Q. Further, we write P −→

M
Q

instead of P →M/AC Q, and we define −→∗
M

to be the transitive closure of −→
M

. We

are interested in the question: Under which conditions do we have P −→∗
M

Q ?

4 Relation Webs

For simplifying the definitions, we will in the following assume that every con-
stant symbol appears at most once in a term. This allows us to ignore the
distinction between constants and constant occurrences. What matters in this
and the next section are the positions occupied by the constants in the terms.

For a given term P , let VP denote the set of constants occurring in P . Let us
now treat a term as a binary tree whose inner nodes are labeled by either • or
◦, and whose leaves are the elements of VP . For a, b ∈ VP we write a3•

P
b if their

first common ancestor in P is a • and we write a3◦
P
b if it is a ◦. Furthermore,

we define E •
P = {(a, b) ∈ VP × VP | a3•P b} and E ◦

P = {(a, b) ∈ VP × VP | a3◦P b}.
Note that E •

P and E ◦
P are symmetric, i.e., (a, b) ∈ E •

P iff (b, a) ∈ E •
P . We also

have E •
P ∩ E ◦

P = ∅ and E •
P ∪ E ◦

P = (VP × VP ) \ {(a, a) | a ∈ VP }. The triple�P = 〈VP ; E •
P ,E

◦
P 〉 is called the relation web of P . We can think of it as a

complete undirected graph with vertices VP and edges E •
P ∪ E ◦

P where we color
the edges in E •

P red and the edges in E ◦
P green.

Consider for example the term P = [[a ◦ (b • c)] ◦ [d ◦ (e • f)] ]. Its syntax tree
and its relation web are, respectively,

◦
◦ ◦
• •

a b c d e f

and

a b

f c

e d

(8)
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where the red lines are solid and green lines are drawn as dotted lines.
It is now easy to see that we have the following:

4.1 Proposition. Let P and Q be terms. Then �P = �Q iff P ≈ Q.

More interesting, however, is the question, under which circumstances a triple
〈V; E •,E ◦〉 is indeed the relation web of a term. Let us define a preweb to be a
triple 〈V; E •,E ◦〉 where E • and E ◦ are symmetric subsets of V × V such that

E • ∩ E ◦ = ∅ and E • ∪ E ◦ = (V × V) \ {(a, a) | a ∈ V} . (9)

4.2 Proposition. Let G = 〈V; E •,E ◦〉 be a preweb. Then G = �P for some
term P if and only if we do not have any a, b, c, d ∈ V with

a b

c d
(10)

Proof: See, e.g., [Ret93, BdGR97, Gug07]. 	


Let P be a term and let W ⊆ VP . Then we can obtain from �P a new relation
web (�P )|W = 〈W; F •,F ◦〉 by simply removing all vertices not belonging to W
and all edges adjacent to them. Similarly we can obtain from P a term P |W by
removing in the term tree all leaves not in W and then systematically removing
all ◦- and •-nodes that became unary by this. More formally, we define a|W = a
if a ∈ W and

[A ◦ B ]|W =

�����
����

[A|W ◦ B|W ] if VA ∩ W �= ∅ and VB ∩ W �= ∅
A|W if VA ∩ W �= ∅ and VB ∩ W = ∅
B|W if VA ∩ W = ∅ and VB ∩ W �= ∅
undefined otherwise

and similarly we define (A • B)|W . Clearly we then have �(P |W) = (�P )|W ,
but note that P |W is not necessarily a subterm of P . For example, let P =
[(a • b)◦ (c • [(d • e)◦ f ])] and W = {a, c, f}. Then P |W = [a ◦ (c • f)]. If we have
another term Q with VP ∩ VQ �= ∅ then we write P |Q to abbreviate P |VP ∩VQ .

The term “relation web” first appears in [Gug07]. The basic idea, however, is
much older. In graph theory, a graph 〈V; E •〉 not containing configuration (10) is
called P4-free. It is also called a cograph because its complement 〈V; E ◦〉 has the
same property. Cographs are used in [Ret96] to provide a correctness criterion
for linear logic proof nets, where 〈•, ◦〉 is 〈�,�〉. One can also find the terms N -
free or Z-free if configuration (10) is forbidden, depending on how the picture is
drawn. A comprehensive survey is for example [Möh89]. If • is not commutative,
but only associative, then E • becomes a partial order, more precisely, a series-
parallel order (by Proposition 4.2 it can be obtained from the singletons via
series- and parallel composition of orders). The inclusion relation for these orders
has been characterized by a rewriting system in [BdGR97].

4.3 Remark. Proposition 4.2 also scales to the case with more than two
binary operations. For example in [Ret93, BdGR97, Gug07] it is proved for the
case of two commutative operations and one non-commutative operation.
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5 The Characterisation of Medial

For two terms P andQ, we write P �� Q if their relation webs obey the following
three properties:

(i) VP = VQ,
(ii) E •

P ⊆ E •
Q (or, equivalently, E ◦

Q ⊆ E ◦
P ), and

(iii) for all a, d ∈ VP (= VQ) with a3
◦
P
d and a3

•
Q
d, there are b, c ∈ VP such

that we have the following configurations

in �P :
a b

c d
in �Q:

a b

c d
(11)

The motivation for this definition is the following theorem.

5.1 Theorem. For two terms P and Q we have P −→∗
M

Q iff P �� Q.

When proving this theorem, we make crucial use of two lemmas.

5.2 Lemma. Let P and Q be terms with P −→∗
M

Q. If P ′ is a subterm of P ,

then P ′ −→∗
M

Q|P ′ . And if Q1 is a subterm of Q, then P |Q1 −→
∗
M

Q1.

Proof: Since P −→∗
M

Q, we have an n ≥ 0 and terms R0, . . . , Rn, such that
P ≈ R0 −→M R1 −→M · · · −→

M
Rn ≈ Q. We will say an Ri (for 0 ≤ i ≤ n) is

nested if there is a term R ≈ Ri which has a subterm [(A1 •B1)◦ (A2 •B2)] such
that VA1 ∩ VP ′ �= ∅ and VA2 ∩ VP ′ �= ∅ and VB1 ∩ VP ′ = ∅. We first show that
none of the Ri can be nested. Clearly R0 (≈ P ) is not nested. Now we proceed
by way of contradiction and pick the smallest i such that Ri is nested. Since
Ri is obtained from Ri−1 via a medial rewriting step, we can, without loss of
generality, assume that A1 = [A ◦C ] and B1 = [B ◦D ] such that VA ∩ VP ′ �= ∅
and V[B◦D ]∩VP ′ = ∅, and that Ri−1 has [(A•B)◦(C•D)◦(A2•B2)] as subterm.
But then Ri−1 is also nested. Contradiction. Now we define R′

i = Ri|P ′ for all
0 ≤ i ≤ n. We are going to show that R′

i ≈ R′
i+1 or R′

i −→M R′
i+1 for all 0 ≤ i ≤ n.

We have Ri −→M Ri+1. Hence, Ri has a subterm [(A • B) ◦ (C • D)] which is
replaced by ([A◦C ] • [B ◦D ]) in Ri+1. Now we proceed by way of contradiction:
since R′

i �≈ R′
i+1 we have (without loss of generality) that VA ∩ VP ′ �= ∅ and

VD ∩ VP ′ �= ∅. Since additionally R′
i /−→

M
R′

i+1, we must have VA ∩ VP ′ = ∅
or VC ∩ VP ′ = ∅. Hence Ri is nested, which is a contradiction. Now the first
statement of the lemma follows by an induction on n. The second statement is
shown analogously. 	


5.3 Lemma. Let P and Q be terms with P �� Q. If P ′ is a subterm of P ,
then P ′ �� Q|P ′ . And if Q1 is a subterm of Q, then P |Q1 �� Q1.

Proof: For proving the first statement, let Q′ = Q|P ′ . We have VP ′ = VQ′ and
E •

P ′ ⊆ E •
Q′ . Now let a, d ∈ VP ′ with a3

◦
P ′ d and a3

•
Q′ d. Then we also have a3◦

P
d
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and a3•
Q
d, and therefore we have b, c ∈ VP such that (11). In order to complete

the proof of the lemma, we need to show that b, c ∈ VP ′ . By way of contradiction,
assume that b occurs in the context of P ′. Then b has the same first common
ancestor with a and d in P . Hence, the edges (a, b) and (d, b) have the same color
in �P . Contradiction. The second statement is shown analogously. 	


5.4 Remark. It is important to observe that it is crucial for both lemmas
that P ′ is a subterm of P (or that Q1 is a subterm of Q). If we just have
P �� Q (resp. P −→∗

M
Q) and a subset W ⊆ VP , then in general we do not

have that P |W �� Q|W (resp. P |W −→∗
M

Q|W). A simple example is given by
P = [(a • b) ◦ (c • d)] and Q = ([a ◦ c] • [b ◦ d]) and W = {a, b, d}. Then
P |W = [(a•b)◦d] and Q|W = (a• [b◦d]). We clearly have P �� Q (resp. P −→∗

M
Q)

but not P |W �� Q|W (resp. P |W −→∗M Q|W).

Proof of Theorem 5.1: First, assume we have P −→∗
M

Q. Then there is an

n ≥ 0 with P −→n
M

Q. Obviously, we have VP = VQ and E •
P ⊆ E •

Q. Hence
Conditions (i) and (ii) are satisfied. For proving Condition (iii), we proceed
by induction on n. For n = 0 this is trivial. Now let n ≥ 1, and assume we
have a and d with a3

◦
P
d and a3

•
Q
d. Then there are terms R and T such that

P −→∗
M

R −→
M

T −→∗
M

Q and a3◦
R
d and a3•

T
d. Because of Proposition 4.1, we can

assume without loss of generality that that R has a subterm [(A •B) ◦ (C •D)],
which is in T replaced by ([A ◦C ] • [B ◦D ]). We can without loss of generality
assume that a ∈ VA and d ∈ VD. Then we have for all b ∈ VB and c ∈ VC the
following configurations:

in �P : in �R: in �T : in �Q:

a b

c d

a b

c d

a b

c d

a b

c d

We will now show that there is a b ∈ VB with a3•
P
b and b3◦

Q
d. For this, we need

an auxiliary definition. For a term S and a constant a ∈ VS we define a partial
order ≺a

S
on the set VS as follows: b1 ≺a

S
b2 iff the first common ancestor of a and

b2 in the term tree of S is also an ancestor of b1. For example, in (8) we have
b ≺c

P
e, and d, e are incomparable wrt. ≺c

P
. Now pick b1 ∈ VB which is minimal

wrt. ≺a
P

. We claim that a3•
P
b1. By way of contradiction, assume a3◦

P
b1. Then

we apply the induction hypothesis to P −→∗
M

R, which gives us a′ and b′ with

configurations
a b′

a′ b1

in �P and
a b′

a′ b1

in �R. It follows (cf. the proof of

Lemma 5.3) that b′ ∈ VB and that b′ ≺a
P
b1, contradicting the minimality of b1. If

b13
◦
Q
d, then we have found our desired b. So, assume b13

•
Q
d, and pick a b4 ∈ VB

which is minimal wrt. ≺d
Q

. With a similar argument as above, we can show that
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b43
◦
Q
d. If a3•

P
b4, then, as before, we have our b. So, let us assume that a3◦

P
b4.

Since we also have that b1 ≺a
P
b4 and b4 ≺d

Q
b1, it follows that b13

◦
P
b4 and b13

•
Q
b4.

By Lemma 5.2 we have P |B −→∗
M

B −→∗
M

Q|B. Now we can apply the induction

hypothesis to P |B −→∗
M

Q|B and get b2, b3 ∈ VB such that we have
b1 b2

b3 b4

in

�P |B and
b1 b2

b3 b4

in �Q|B. Note that b2, b3 ∈ VB and that b2 ≺b1
P
b4. Hence, in

the term tree for P , we have one of the following situations:

◦
•

•
b1 a b2 b4

or

◦
•

•
b1 b2 a b4

In both cases a3•
P
b2. Similarly, it follows that b23

◦
Q
d. With a similar argumen-

tation, we can find c2 ∈ VC with c23
•
P
d and a3

◦
Q
c2. Hence, Condition (iii) is

fulfilled, and we have P �� Q.
Conversely, assume we have P �� Q. We proceed by induction on the cardi-

nality of VP , to show that P −→∗
M

Q. The base case, where VP is a singleton, is
trivial. Now we make a case analysis on the term structure of P and Q.
1. P = [P ′ ◦ P ′′ ] and Q = [Q1 ◦Q2 ]. We define the following four sets:

V ′
1 = VP ′ ∩ VQ1 , V ′

2 = VP ′ ∩ VQ2 , V ′′
1 = VP ′′ ∩ VQ1 , V ′′

2 = VP ′′ ∩ VQ2 .

First, note that we cannot have that one of V ′
1 and V ′′

2 is empty, and
at the same time that one of V ′

2 and V ′′
1 is empty because then one of

VP ′ ,VP ′′ ,VQ1 ,VQ2 would be empty, which is impossible. The remaining two
possibilities of two empty sets are:
– If V ′

2 = ∅ and V ′′
1 = ∅, then VP ′ = VQ1 and VP ′′ = VQ2 . Hence, by

Lemma 5.3 we have P ′ �� Q1 and P ′′ �� Q2. By induction hypothesis
we have therefore

P = [P ′ ◦ P ′′ ] −→∗
M

[Q1 ◦ P ′′ ] −→∗
M

[Q1 ◦Q2 ] = Q

– If V ′
1 = ∅ and V ′′

2 = ∅, then VP ′ = VQ2 and VP ′′ = VQ1 , and we proceed
similarly.

Let us now assume that one of the four sets is empty, say V ′
1 = ∅. We let

P ′
2 = P ′|Q2 , P ′′

1 = P ′′|Q1 , P ′′
2 = P ′′|Q2 .

Then P ′
2 = P ′ and P ′′ ≈ [P ′′

1 ◦P ′′
2 ] becaue E ◦

Q ⊆ E ◦
P . By Lemma 5.3 we have

P ′′
1 �� Q1 and [P ′

2 ◦ P ′′
2 ] �� Q2. Hence, by induction hypothesis we have

P ≈ [P ′
2◦ [P ′′

1 ◦P ′′
2 ] ] ≈ [P ′′

1 ◦ [P ′
2◦P ′′

2 ] ] −→∗
M

[Q1◦ [P ′
2◦P ′′

2 ] ] −→∗
M

[Q1◦Q2 ] = Q

If one of V ′
2 ,V

′′
1 ,V

′′
2 is empty, we can proceed analogously. Let us now con-

sider the case where none of V ′
1 ,V

′
2 ,V

′′
1 ,V

′′
2 is empty. Then we can define

P ′
1 = P ′|Q1 , P ′

2 = P ′|Q2 , P ′′
1 = P ′′|Q1 , P ′′

2 = P ′′|Q2 .
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We have P ′ ≈ [P ′
1 ◦ P ′

2 ] and P ′′ ≈ [P ′′
1 ◦ P ′′

2 ]. By Lemma 5.3 we have
[P ′

1 ◦ P ′′
1 ] �� Q1 and [P ′

2 ◦ P ′′
2 ] �� Q2. Hence, by induction hypothesis:

P ≈ [ [P ′
1 ◦ P ′

2 ] ◦ [P ′′
1 ◦ P ′′

2 ] ] ≈ [ [P ′
1 ◦ P ′′

1 ] ◦ [P ′
2 ◦ P ′′

2 ] ] −→∗
M

[Q1 ◦Q2 ] = Q

2. P = (P ′ • P ′′) and Q = (Q1 •Q2). This is analogous to the previous case.
3. P = (P ′ • P ′′) and Q = [Q1 ◦Q2 ]. As before, we let

V ′
1 = VP ′ ∩ VQ1 , V ′

2 = VP ′ ∩ VQ2 , V ′′
1 = VP ′′ ∩ VQ1 , V ′′

2 = VP ′′ ∩ VQ2 .

Note that if V ′
1 �= ∅ and V ′′

2 �= ∅ then we have immediately a contradiction
to Condition (ii), and similarly if V ′

2 �= ∅ and V ′′
1 �= ∅. Hence, one of V ′

1

and V ′′
2 must be empty, and one of V ′

2 and V ′′
1 must be empty. But this is

impossible as observed in Case 1 above.
4. P = [P ′ ◦ P ′′ ] and Q = (Q1 • Q2). This is the most interesting case. As

before, we let

V ′
1 = VP ′ ∩ VQ1 , V ′

2 = VP ′ ∩ VQ2 , V ′′
1 = VP ′′ ∩ VQ1 , V ′′

2 = VP ′′ ∩ VQ2 .

We first show that none of the sets V ′
1 ,V

′′
1 ,V

′
2 ,V

′′
2 is empty. So, assume by

way of contradiction, that V ′′
1 = ∅. By a similar argumentation as before it

follows that V ′
1 �= ∅ and V ′′

2 �= ∅. So, pick a ∈ V ′
1 and d ∈ V ′′

2 . We have
a3

◦
P
d and a3•

Q
d. Since P �� Q, we have b, c ∈ VP such that (11). Because

c3
•
P
d we must have that c ∈ VP ′′ , and because of a3◦

Q
c, we must have that

c ∈ VQ1 . Hence c ∈ V ′′
1 . Contradiction. We can therefore define:

P ′
1 = P ′|Q1 , P ′

2 = P ′|Q2 , P ′′
1 = P ′′|Q1 , P ′′

2 = P ′′|Q2 ,

and

Q′
1 = Q1|P ′ , Q′

2 = Q2|P ′ , Q′′
1 = Q1|P ′′ , Q′′

2 = Q2|P ′′ .

We now want to show that P ′
1 �� Q′

1. But by Remark 5.4 we cannot apply
Lemma 5.3. However, we have VP ′

1
= VQ′

1
and E •

P ′
1
⊆ E •

Q′
1
. Now let a, d ∈ VP ′

1

with a3
◦

P ′
1
d and a3•

Q′
1
d. Hence, we have a3◦

P
d and a3

•
Q
d. Since P �� Q, we

have b, c ∈ VP such that (11). Note that because a, d ∈ VP ′ , we also have
b ∈ VP ′ (otherwise we would have a3◦

P
b) and c ∈ VP ′ (otherwise we would

have c3◦
P
d). Similarly, because a, d ∈ VQ1 , we also have b, c ∈ VQ1 (otherwise

we would have a3•
Q
c and b3•

Q
d, respectively). Hence b, c ∈ VP ′

1
, and therefore

P ′
1 �� Q′

1. Similarly, we get P ′′
1 �� Q′′

1 and P ′
2 �� Q′

2 and P ′′
2 �� Q′′

2 . Hence,
we have by induction hypothesis

P ′
1 −→

∗
M

Q′
1 , P ′′

1 −→
∗
M

Q′′
1 , P ′

2 −→
∗
M

Q′
2 , P ′′

2 −→
∗
M

Q′′
2 . (12)

Now let P ′
12 = (P ′

1 • P ′
2). We clearly have VP ′ = VP ′

12
and E •

P ′ ⊆ E •
P ′

12
. Now

let us assume we have a, d ∈ VP ′ with a3◦
P ′ d and a3•

P ′
12
d. Then we must have

a ∈ VP ′
1

and d ∈ VP ′
2
, or vice versa (otherwise the two edges would have the

same color in P ′ and P ′
12). Hence, we have a3◦

P
d and a3•

Q
d. Since P �� Q,

we have b, c ∈ VQ such that (11). Note that because a, d ∈ VP ′ , we also have
b, c ∈ VP ′ (otherwise we would have a3◦

P
b and d3◦

P
c). This means we have in



352 L. Straßburger

�P ′ the configuration
a b

c d
. Since we have a3◦

Q
c and b3◦

Q
d, we must also

have a3◦
P ′

12
c and b3◦

P ′
12
d. And since we have a3•

P
b and c3•

P
d, we also have a3•

P ′
12
b

and c3
•

P ′
12
d. Furthermore, we have a3•

P ′
12
d (because a ∈ VP ′

1
and d ∈ VP ′

2
).

Hence, we have in �P ′
12 the configuration

a b

c d
. By Proposition 4.2, we

must have
a b

c d
. Hence, P ′ �� (P ′

1 • P ′
2). By the same argumentation, we

get P ′′ �� (P ′′
1 • P ′′

2 ) and [Q′
1 ◦ Q′′

1 ] �� Q1 and [Q′
2 ◦ Q′′

2 ] �� Q2. By
induction hypothesis we have therefore

P ′ −→∗
M

(P ′
1 • P ′

2) [Q′
1 ◦Q′′

1 ] −→∗
M

Q1

P ′′ −→∗
M

(P ′′
1 • P ′′

2 ) [Q′
2 ◦Q′′

2 ] −→∗
M

Q2

(13)

Now we can combine (12) and (13) to get
[P ′ ◦ P ′′ ] −→∗

M
[(P ′

1 • P ′
2) ◦ (P ′′

1 • P ′′
2 )] −→

M
([P ′

1 ◦ P ′′
1 ] • [P ′

2 ◦ P ′′
2 ])

−→∗
M

([Q′
1 ◦Q′′

1 ] • [Q′
2 ◦Q′′

2 ]) −→∗
M

(Q1 •Q2)

In other words: P −→∗
M

Q. 	


5.5 Corollary. The relation �� ⊆ T ×T is transitive.

6 Related Results

Let us compare our result to the one in [BdGR97], where one of the two binary
operations was not commutative but only associative. Although this has some
consequences for the characterization of relation webs (Proposition 4.2), the
consequences for the main result (Theorem 5.1) are only cosmetic. For this reason
let us recall here the commutative version of the results in [BdGR97]. Let P be
the rewriting system

([x ◦ y ] • [w ◦ z ])→ [(x • w) ◦ (y • z)]
(x • [y ◦ z ])→ [(x • y) ◦ z ]

(x • y)→ [x ◦ y ]

(14)

Note that it is not a typo that the first rewrite rule is the inversion of medial.
Analogous to −→∗

M
, we define −→∗

P
to be the transitive closure of the rewriting

relation via (14) modulo AC. The result of [BdGR97] can be stated as follows:

6.1 Theorem. For terms P,Q we have P −→∗
P
Q iff VP = VQ and E ◦

P ⊆ E ◦
Q.

In other words, the main difference to Theorem 5.1 is that the Condition (iii) is
absent in [BdGR97]. Let us now look at the case where we remove the first rule
from P. Let S be the rewrite system

(x • [y ◦ z ])→ [(x • y) ◦ z ]
(x • y)→ [x ◦ y ]

(15)
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We define P −→∗
S
Q as above. The characterization of this relation is the following:

6.2 Theorem. We have P −→∗
S
Q if and only if VP = VQ, and for all n ≥ 1

and all subsets W = {a1, b1, . . . , an, bn} ⊆ VP we do not have that

P |W ≈ ([a1 ◦b1 ] • · · ·• [an ◦bn ]) and Q|W ≈ [(b1 •a2)◦ (b2 •a3)◦ · · ·◦ (bn •a1)]

In other words, we are not allowed to have the following configurations in the
relation webs of P and Q:

in �P : in �Q:

b2 a3

a2 b3

b1 a4

a1 b4

bn a5

an · · · b5

b2 a3

a2 b3

b1 a4

a1 b4

bn a5

an · · · b5

Note that E ◦
P ⊆ E ◦

Q follows by letting n = 1.

6.3 Remark. This characterization is simply an alternative formulation of
the correctness criterion for proof nets for multiplicative linear logic [Ret96]. For
this, we have to read the • as tensor �, and the ◦ as par �. Then, the rule

(x�[y� z ])→ [(x� y)� z ]

is also called switch [Gug07], weak distributivity [BCST96], or dissociativity
[DP04]. The rule

(x� y)→ [x� y ]
is called mix. The condition in Theorem 6.2 is equivalent to the acyclicity con-
dition in proof nets [DR89].2

It is interesting to note the different nature of the three characterizations of
the rewrite systems M, P, and S. This is the reason for the difficulty to give a
characterization of the rewrite system MS, which combines M and S:

[(x • y) ◦ (w • z)] → ([x ◦ w] • [y ◦ z ])
(x • [y ◦ z ])→ [(x • y) ◦ z ]

(x • y)→ [x ◦ y ]

(16)

2 If mix is absent, then an additional condition (connectedness) would be needed. For
more details on the relation between S and linear logic, see, e.g., [DHPP99, Ret93,
Gug07, Str03a], and for relating the condition in Theorem 6.2 to multiplicative proof
nets, see, e.g., [Ret03]. For more information on mix, see [FR94], and for a direct
proof of Theorem 6.2, see, e.g., [Str03b, Str03a].
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6.4 Open Problem: Find a characterization of the rewrite relation −→∗
MS

in
terms of relation webs.

7 Application in Proof Theory

The motivation for stating the open problem concluding the previous section is
the increasing importance of the relation −→∗

MS
for the proof theory of classical

propositional logic [BT01, Lam06, Str05]. To see this, we have to read the • as
conjunction ∧ and the ◦ as disjunction ∨.

A central ingredient to logic is the notion of duality. For dealing with this,
we let the set of constant symbols come in pairs: for every a there is its dual ā.
Then the terms are the formulas in negation normal form and the constants are
the literals. If a formula I is of the shape

([a1 ◦ ā1 ] • [a2 ◦ ā2 ] • · · · • [an ◦ ān ])

for some n ≥ 1 and constants a1, a2, . . . , an, then we say I is an initial formula.
It is well-known that classical logic is multiplicative linear logic plus contrac-

tion and weakening. Let us therefore introduce two more rewrite systems. Let
W be the rewrite system containing only the rule

x→ [x ◦ y ] (17)

and let C be the system containing only the rule

[x ◦ x] → x (18)

Now let K1 = S ∪W ∪ C. Then we have the following theorem, which says that
a proof in classical logic is a rewrite path in K1.

7.1 Theorem. A formula Q is a Boolean tautology if and only if there is an
initial formula I with I −→∗

K1
Q. [BT01]

As already mentioned in Section 2, we can with medial reduce contraction to
literals. Let C′ be the rewrite system consisting of a rule

[a ◦ a] → a (19)

for every constant symbol (including their duals). If we let K2 = MS ∪W ∪ C′,
then we have

7.2 Theorem. Let P and Q be formulas. Then P −→∗
K1

Q iff P −→∗
K2

Q. [BT01]

While [BT01] and related work (e.g., [GS01, Gug07, Brü03, Str03a]) are mainly
concerned with the syntactic manipulation of terms/formulas, Hughes proposes
in [Hug06] the notion of combinatorial proof, which is based on a variant of The-
orem 6.2 and the notion of skew fibration: Given two prewebs G1 = 〈V1; E •

1 ,E
◦
1 〉

and G2 = 〈V2; E •
2 ,E

◦
2 〉, then a skew fibration h : G1 → G2 is a mapping V1 → V2

such that
(a) (a, b) ∈ E •

1 implies (h(a), h(b)) ∈ E •
2 (i.e., h is a graph homomorphism for

the red edges), and
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(b) for all a ∈ V1 and d ∈ V2, if (h(a), d) ∈ E •
2 , then there is a b ∈ V1 with

(a, b) ∈ E •
1 and (h(b), d) /∈ E •

2 .
A combinatorial proof of a Boolean formula Q is a skew fibration h : �P → �Q
for a formula P such that
(c) �P does not contain a configuration

ā2 a3

a2 ā3

ā1 a4

a1 ā4

ān a5

an · · · ā5

(20)

for any n ≥ 1 and constants a1, a2, . . . , an, and
(d) h maps only non-negated constants to non-negated constants and negated

constants to negated ones.

7.3 Theorem. A formula Q is a Boolean tautology, if and only if it has a
combinatorial proof. [Hug06]

7.4 Remark. Note that for Theorems 7.1 and 7.3 to make sense, we have to
allow more than one occurrence of a constant in a formula. This means that in
the relation web �P of a formula P , the set VP is the set of constant occurrences.
Then we can call a map h : VP → VQ label preserving if the name of a constant
is not changed by h.

To give an example, we show here the combinatorial proof of Pierce’s law Q =
[([ā ∨ b] ∧ ā) ∨ a], taken from [Hug06]. We let P = [(ā1 ∧ ā2) ∨ a1 ∨ a2 ]. The
skew fibration h : �P → �Q is given as follows:

�P → �Q

ā1 ā2 ā ā

a1 a2 b a

7.5 Theorem. Let P and Q be formulas. Then P �� Q if and only if
VP = VQ and the identity function on VP is a skew fibration �P → �Q.

Proof: First, assume P �� Q. Since E •
P ⊆ E •

Q, Condition (a) above is fulfilled.
Now let a, d ∈ VP with a3

•
Q
d. If a3•

P
d, then we let b = d and we are done.

If a3◦
P
d, then we have b, c ∈ VP with (11). Now b has the desired properties.

Conversely, assume that VP = VQ and the identity VP → VQ is a skew fibration.
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By (a) we have E •
P ⊆ E •

Q. Now let a, d ∈ VP with a3◦
P
d and a3•

Q
d. Then by (b)

there is a b ∈ VP with a3•
P
b and b3◦

Q
d. Since E •

P ⊆ E •
Q, we also have a3•

Q
b and

b3
◦
P
d. By exchanging the roles of a and d and applying (b) again, we get c ∈ VP

with d3
•
P
c and c3

◦
Q
a. Since E •

P ⊆ E •
Q, it follows that d3•

Q
c and c3

◦
P
a. Hence

c �= b. By Proposition 4.2, we conclude that b3◦
P
c and b3•

Q
c. 	


In the following, we establish a precise relation between the notion of proof as
rewriting path (in a deep inference deductive system) and the notion of proof as
a combinatorial object using relation webs and skew fibrations. For this, we first
have to characterize the rewrite systems W and C′. Let P and Q be formulas. A
map w : �P → �Q is called a weakening, if
(e) w is an injective skew fibration, and
(f) for all a, b ∈ VP , we have a3•

P
b iff w(a)3•

Q
w(b).

A map c : �P → �Q is called an atomic contraction, if
(g) c is surjective, and
(h) for all a, b ∈ VP , we have a3•

P
b iff c(a)3•

Q
c(b).

Note that it follows that c is a skew fibration. We have the following:

7.6 Proposition. For all formulas P and Q,
1. P −→∗

W
Q iff there is a label preserving weakening w : �P → �Q.

2. P −→∗
C′ Q iff there is a label preserving atomic contraction c : �P → �Q.

Proof: The “only if” direction is trivial for both statements. The “if” direction
for the first statement follows by observing that condition (b) implies that for all
d not in the image of w there is in Q a subformula D containing only material
(including d) not appearing in P , and a subformula B containing only material
(including b) appearing in P , such that [B ◦ D ] is also a subformula of Q.
Injectivity and Condition (f) ensure that B is also a subformula of P . Hence,
we can rewrite B into [B ◦ D ]. For the second statement it suffices to note
that whenever two occurrences of a constant a in P are mapped onto the same
occurrence in Q, then they must appear as subformula [a ◦ a] in P . 	


7.7 Lemma. A label preserving skew fibration h : VP → VQ is surjective if
and only if there is a formula R with VR = VP such that P �� R and h is an
atomic contraction when seen as map �R→ �Q.

Proof: Let h be surjective. We construct R from Q by replacing each constant
occurrence a by [a ◦ · · · ◦ a] where the number of a’s is the cardinality of the
preimage h−1(a) in P . Then obviously the canonical map VR → VQ is an atomic
contraction, and the identity map VP → VR inherits from h the property of
being a skew fibration. Finally we apply Theorem 7.5. The converse follows from
the fact that the composition of a skew fibration with an atomic contraction is
again a skew fibration.3 	

3 An anonymous referee pointed out that it is in general not true that the composition
of two skew fibrations is again a skew fibration because they are defined on prewebs.
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Now we can put everything together to give a combinatorial proof for the fol-
lowing theorem:

7.8 Theorem. A formula Q is a Boolean tautology if and only if there is an
initial formula I, such that I −→∗

S
P −→∗

M
R −→∗

C′ S −→∗
W

Q for some formulas P ,
R, and S.

Proof: The “if” direction follows immediately from Theorems 7.1 and 7.2.
For the “only if” direction we start with the combinatorial proof for Q given
by Theorem 7.3. We have a skew fibration h : �P → �Q. By Theorem 6.2
and Condition (c) we can obtain an initial formula I with I −→∗

S
P . Now we

let VS ⊆ VQ be the image of h : VP → VQ, and let S = Q|VS . This gives us
a surjective skew fibration h′ : �P → �S. We can rename in P (and in I)
all appearing constants such that h′ becomes label preserving. Then we apply
Lemma 7.7 to get R. By Theorem 5.1 we have P −→∗

M
R, and by Proposition 7.6.2

we have R −→∗
C′ S. Finally, note that the embedding �S → �Q is a weakening.

So, by Proposition 7.6.1 we get S −→∗
W

Q. 	


7.9 Remark. The proof of Theorem 7.8, together with the rule permutation
results in the calculus of structures [Brü03] can be used to show that skew
fibrations are closed under composition when their definition is restricted to
relation webs (cf. Footnote 3).

8 Conclusions and Future Work

We have shown a combinatorial criterion for characterizing rewriting via me-
dial modulo associativity and commutativity. This has been used for giving a
combinatorial proof to a proof theoretic statement. So far, statements as in The-
orem 7.8, also called decomposition theorems [Str03b, Brü03], have been proved
via tedious permutations of inference rules in the calculus of structures. An in-
teresting question for future research is whether these proofs can be simplified
in general via a combinatorial analysis as carried out in this paper.

A second line of research is in the area of coherence problems in category the-
ory. There, the question is not the existence of rewriting paths, but the identity
of rewriting paths. Some investigation in this direction for rewriting via M can
be found in [DP07]. For the system MS, see [Lam06], and for all of K1 and/or
K2, see [Str05].
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[Ret96] Retoré, C.: Perfect matchings and series-parallel graphs: multiplicatives
proof nets as R&B-graphs. ENTCS,3 (1996)
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Abstract. This paper gives the exact number of the maximum length
of mu-reduction and permutative conversions for an untyped term in
lambda mu-calculus with disjunction. This number is described by using
induction on the number of symbols in a term. It is also shown that left-
most short reduction and innermost null reduction produce the longest
reduction sequence.

1 Introduction

λμ-calculus given in [9] has been intensively studied, for example [1,2,3,6,7,8], be-
cause it is important in both mathematical logic and computer science; this sys-
tem corresponds to classical natural deduction by Curry-Howard isomorphism,
and this system gives us a theory of functional programming languages with
continuation mechanism.

Recently permutative conversions have been studied actively [1,3,4,5,6,8,11].
Permutative conversions transform a proof with a disjunction or existential quan-
tification elimination rule followed by an elimination rule into a proof with the
second rule in the minor deduction of the first rule. Permutative conversions are
indispensable for normalizing a proof in a natural deduction system with dis-
junction, since without permutative conversions, a normal proof fails to have the
subformula property. Permutative conversions also give program transformation
for if-then-else statements.

One of nice properties for typed λμ-calculus is strong normalization [9]. So
far there are two techniques to prove it; one is saturated-set semantics and the
other is CPS translation. The CPS translation reduces strong normalization of
typed λμ-calculus to that of typed λ-calculus [3,7]. In that proof, strong nor-
malization of μ-reduction has to be proved separately. The strong normalization
of untyped μ-reduction is proved in [3] by giving an upper bound of reduction
steps. The strong normalization of untyped symmetric μ-reduction is proved in
[2] by induction on a term.

This paper gives the exact number of the maximum length of μ-reduction in
untyped λμ-calculus with disjunction. This number for a term is expressed by
induction on the number of symbols in the term. So far the exact counting of
the maximum μ-reduction steps has not been studied. This paper also analy-
ses the maximum number of steps of μ-reduction with permutative conversions.
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This problem is itself interesting in the view point of combinatorics. Moreover
these results provide us perspective understanding of μ-reduction and permuta-
tive conversions. We will also give reduction strategy that produces the longest
reduction sequence.

To count the exact maximum steps, we will use the property that the maxi-
mum steps for each redex can be calculated independently of the other redexes,
and the maximum steps for a term can be obtained as the sum of the maximum
steps for all the redexes. To implement this idea, we will use a context-argument
reduction tree. The number of inner nodes in this tree will give the maximum
number of steps for a specific redex, and the number of leaves in this tree will
give the maximum number of copies by the specific redex. Moreover this tree is
an invariant under effective non-context-argument reduction. According to this
counting, we will also give two reduction strategies, leftmost short reduction
and innermost null reduction, and prove that these strategies actually give the
longest reduction sequence.

Section 2 defines the system λμ∨, λμ-calculus with disjunction. The maximum
length of reduction steps is described in Section 3. Section 4 defines leftmost
short reduction and innermost null reduction, and gives intuitive explanation
for our description of the maximum length. Section 5 proves that it is actually
the maximum length, and also proves that those reduction strategies produce
the longest reduction sequence. Section 6 gives concluding remarks.

2 The Lambda Mu-Calculus with Disjunction

We will give the definition of the system λμ∨, the untyped λμ-calculus with
disjunction. This system is obtained from λμ-calculus in [9] by adding disjunc-
tion in natural deduction given in [10]. Its reduction system has permutative
conversions for disjunction.

Definition 2.1 (Language)
Variables x, y, z, u, v, w, . . ..
Names α, β, . . ..
Terms M,N,L, P,Q,R, S ::= x|MN |[α]M |μα.M |M [x.N, y.L]

MN is an application, [α]M is a named term, and μα.M is a μ-abstraction term.
M [x.N, y.L] is a disjunction elimination term that comes from the disjunction
elimination inference rule

M : A ∨B

[x : A]....
N : C

[y : B]....
L : C

M [x.N, y.L] : C

in natural deduction [10]. The variable x in N and the variable y in L are bound
in M [x.N, y.L].

Notation. The symbol = is used for the syntactical identity modulo bound
variable renaming. The set FN(M) of free names in the term M is defined in
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a standard way by: FN(x) = φ, FN(MN) = FN(M) ∪ FN(N), FN([α]M) =
{α} ∪ FN(M), FN(μα.M) = FN(M) − {α}, and FN(M [x.N, y.L]) = FN(M) ∪
FN(N) ∪ FN(L).

Remark. The λμ-calculus with disjunction usually has the following term
syntax: M ::= x|λx.M |MN |[α]M |μα.M |〈0,M〉|〈1,M〉|M [x.M, x.M ]. However,
since we will only discuss μ-reduction and permutative conversions, for simplic-
ity we excluded lambda abstraction λx.M and injections 〈0,M〉 and 〈1,M〉 for
disjunction in our term syntax.

Substitution M [x := N ] is defined in a familiar way.
We define eliminators by E,F ::= M |[x.M, y.N ].
Structural substitution M [α∗ := E] is defined in a standard way as follows:

x[α∗ := E] = x

(ML)[α∗ := E] = (M [α∗ := E])(L[α∗ := E])
([α]M)[α∗ := E] = [α](M [α∗ := E])E
([β]M)[α∗ := E] = [β](M [α∗ := E]) (α �= β)
(μβ.M)[α∗ := E] = μβ.(M [α∗ := E]) (α �= β)
(M [x.P, y.Q])[α∗ := E] = (M [α∗ := E])[x.P [α∗ := E], y.Q[α∗ := E]]

Definition 2.2 (Reduction rules). μ-reduction:

(μ) (μα.M)E → μα.M [α∗ := E]

Permutative conversions:

(π∨) M [x.N, y.L]E →M [x.NE, y.LE]

A context C is defined in a usual way as a term with the hole:

C,D ::= ·|CM |MC|[α]C|μα.C|C[x.N, y.L]|M [x.C, y.L]|M [x.N, y.C]

C[M ] is defined as a term obtained from C by replacing the hole · by M .
Congruency:

(congr) C[M ]→ C[N ] if M → N.

The relation →∗ is defined as the reflexive transitive closure of the relation
→, and the relation →+ is defined as the transitive closure of the relation →.

The redex of a reduction by the rule (μ) is (μα.M)E. The redex of a reduction
by the rule (π∨) is M [x.N, y.L]E. The redex of a reduction by the rule (congr)
is the redex of the reduction M → N . In the redex (μα.M)E, we call μα.M its
function and E its argument respectively. In the redex M [x.N, y.L]E, we call
M [x.N, y.L] its function and E its argument respectively.

Remark. Church Rosser property holds.
A term M is defined to be strongly normalizing if there is no infinite reduction

sequence M →M1 →M2 → . . . beginning with M .
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It is well known that every term in this system is strongly normalizing [3].
For a reduction sequence M → M1 → . . . → Mn, its length is defined as n.

||M || is defined as the maximum length of reduction sequences beginning with
M .

The next section will explicitly give us the maximum length ||M || by induction
on the number of symbols in M .

3 Maximum Length of Reductions

This section will give the maximum length of reduction for a term by induction
on the number of symbols in the term. For that, we will use a context-argument
reduction tree.

We will use vector notation to denote a sequence. For example, 4M denotes
the sequence M1,M2, . . . ,Mn and M 4N denotes MN1N2 . . . Nn.

We define head constructors by H ::= x 4M |([α]M) 4M . A head constructor does
not have any function in its initial part. For example, ([α]x)(μβ.[β]y)z is a head
constructor. On the other hand ([α]x)[y0.y0, y1.y1]z is not a head constructor,
since its initial part ([α]x)[y0.y0, y1.y1] is a function.

A multicontext M is defined by:

M ::= ·|x|MM|[α]M|μα.M|M[x.M, x.M].

A multicontext may have several holes and may not have any hole. M[N ] is
defined as a term obtained from M by replacing all the hole · by N . We will
sometimes use C and D to denote a multicontext when we remark they are a
multicontext.

Definition 3.1. The reduction is extended from a term to a context and a
multicontext in a standard way by handling the hole · as a fresh variable.

An eliminator context is defined by E ::= C|[x.C, y.M ]|[x.M, y.C]. An elimi-
nator context is an eliminator with the hole. For example, [x0.y ·, x1.x1] is an
eliminator context.

Context-argument reduction M→ca M′ is defined to hold if M→M′ and
the argument of its redex includes some hole. For example, C →ca M holds if
and only if C →M and its redex is NE where C = C1[NE ].

Non-context-argument reduction M→nca M′ is defined to hold if M→M′

holds and M→ca M′ does not hold.
An effective redex is of the form either M [x0.N0, x1.N1]L or (μα.M)N where

α is in FN(M).
Effective reduction M →e M

′ is defined to hold if M → M ′ holds and its
redex is effective.

A null redex is of the form (μα.M)N where α is not in FN(M).
Null reduction M →n M

′ is defined to hold if M → M ′ holds and its redex
is null.

A tree is defined as a finitely-branching tree with a natural number at each node.
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Definition 3.2. A tree is defined as follows: (1) A natural number is a tree.
(2) If T1, . . . , Tn are trees and m is a natural number, then

�
�

�
�

�

	
	

	
	

	

m

T1 Tn

· · ·
is a tree.

Each number in a tree is called a node. A lowermost node is called a leaf. We
say an inner node to denote a node which is not a leaf. The uppermost node is
called the root.

For a tree T , |T |l is the number of leaves in T and |T |n is defined as

(the number of inner nodes in T ) + (the sum of all the nodes in T ).

For a tree T , the tree T+ is obtained from T by changing its root n to n+ 1.

Example. (1) Let T1 be

0
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0 0 0

0 0 0
�

�



0 0

�
�




0 0

�
�



00

. Then T1 is a tree, and we

have |T1|l = 6 and |T1|n = 7.

(2) Let T2 be

0
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00

. Then T2 is a tree, and we have

|T2|l = 6 and |T2|n = 7.

(3) The tree T+
1 is
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.
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Notation. We will use a branch with a natural number n as an abbreviation
to denote n copies of the branch. That is, we write

m

T

n to denote

�
�

�
�

�

	
	

	
	

	

m

T T

· · ·
n times

Example. The tree

0






����
0 1 1

is abbreviated as

0
�

�
	

	
0 1

2
.

A context-argument reduction tree Tr(C) is a trace of context-argument re-
ductions for C. A parent node represents a subterm before reduction and its
child nodes correspond to subterms produced by reduction. A null reduction is
recorded by the number at the parent node. Tr(C) is an invariant under effective
non-context-argument reduction.

If all the reductions for C are effective, each node in the tree Tr(C) has the
value 0. In this case, the number of inner nodes equals the maximum number
of steps of context-argument reduction for C. If we have some null context-
argument reductions for C, then some nodes in the tree Tr(C) have a value n
where n > 0. In this case, the sum |Tr(C)|n equals the maximum number of
steps of context-argument reduction for C. Note that a reduction step for a
multicontext is context-argument reduction if its redex is of the form ME .
|Tr(C)|l equals the maximum number of copies of the hole by context-argument

reduction.

Definition 3.3. 5M is defined as the number of variable symbols and name
symbols in the term M . For example, 5(μα.[α]x) is 3. 5C is defined in the same
way.

A context-argument reduction tree Tr(C) of a context C is defined by induction
on 5C as follows where we write |C|l and |C|n for |Tr(C)|l and |Tr(C)|n respectively:

Tr(·) = 0
Tr(CE) = Tr(C)
Tr([α]C) = Tr(C)
Tr(μα.C) = Tr(C)
Tr(HC) = Tr(C)
Tr(H [x.C, y.N ]) = Tr(C)
Tr(H [x.N, y.C]) = Tr(C)

Tr(H [x0.N0, x1.N1] 4EE) =

�
�

�
�

�

	
	

	
	

	

0

Tr(N0
4EE) Tr(N1

4EE)
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Tr((μα.M) 4EE) =

�
�

�
�

�

	
	

	
	

	

0

Tr(N1
4EE) Tr(Nn

4EE)

|C1|l |Cn|l

· · ·

where α ∈ FN(M) and M = Ci[[α]Ni] (1 ≤ i ≤ n).
Tr((μα.M) 4EE) = Tr(x4EE)+ if α �∈ FN(M).
Note that H is a head constructor, M,N are terms, and E is an eliminator.

Example
(1) Let C1 be (μα.x([α]y)([α]y)([α]y))((μβ.[β]y)((μγ.x([γ]y)([γ]y))·)). Then
Tr(C1) = T1 where the tree T1 is given in the example after Definition 3.2.
The maximum length of context-argument reduction for C1 is 7, which equals
the number of inner nodes in this tree. The maximum number of copies of · by
reduction of C1 is 6, which equals the number of leaves in this tree.

(2) Let C2 be (μα.x([α]y)([α]y)([α]y))((μβ.y)((μγ.x([γ]y)([γ]y))·)). Then
Tr(C2) = T2 where the tree T2 is given in the same example. The maximum
length of context-argument reduction for C2 is 7, which equals the sum of the
number of the inner nodes in this tree and the natural numbers at all the nodes.
The maximum number of copies of · by reduction of C2 is 6, which equals the
number of leaves in this tree. Note that a null reduction by μβ.y is recorded by
the natural number 1 at the corresponding nodes.

Definition 3.4. The measure |M | is defined by

|M | = ΣM=C[NE]|C|l|N · |n.

The next section will explain it and Section 5 will prove that |M | is actually the
maximum length of reduction for the term M .

4 Leftmost Short Reduction

This section gives intuitive explanation for |M |. For that, we will use leftmost
short reduction and innermost null reduction, which produce a reduction se-
quence of the maximum length.

Definition 4.1 (Short redex). If the redex is either (μα.M)N with α ∈
FN(M), or H [x0.N0, x1.N1]E, or (μα.M) 4N [x0.N0, x1.N1]E with α �∈ FN(M),
we call this redex a short redex. Note that M,N are terms, E is an eliminator,
and H is a head constructor.

Short reduction M →s M
′ is defined to hold if M →M ′ holds and its redex

is short.

Note that a short redex is effective.
Example. In u[v0.v0, v1.v1]x[y0.y0, y1.y1]z, the short redex is u[v0.v0, v1.v1]x.

In (μα.x([α]y)([α]y))x[y0 .y0, y1.y1]z, the short redex is (μα.x([α]y)([α]y))x. In
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(μα.x)x[y0.y0, y1.y1]z, the short redex is (μα.x)x[y0.y0, y1.y1]z. In the first and
second examples, if we choose the whole term as a redex, we will miss the longest
reduction sequence, since the redex can be copied and give twice steps. If we
reduce a short redex, we can get the maximum number of copies of those redexes.

Definition 4.2 (Leftmost short reduction). Leftmost short reduction
M →ls M ′ is defined to hold if M →s M ′ and its redex is leftmost among
short redexes.

Example. In u[v0.v0, v1.v1]x[y0.y0, y1.y1]((μα.[α]x)z), the short redexes are
u[v0.v0, v1.v1]x and (μα.[α]x)z. The leftmost short redex is u[v0.v0, v1.v1]x.

Note that if M has an effective redex, we have M →ls M ′ for some M ′,
because some head part of the redex is a short redex and hence M has the
leftmost short redex.

The next proposition shows that leftmost short reduction strategy gives us a
reduction sequence of the maximum length. We can easily show this claim if we
know it is strongly normalizing.

Proposition 4.3. If M is strongly normalizing and M →ls N , then ||M || =
||N ||+ 1.

Proof. We will show the claim by induction on ||M ||. Let M → M1 → M2 →
. . .→Mk be a reduction sequence of the maximum length.

Let M be C[LE] and LE be the redex forM →ls N . Suppose that in M →M1

the redex R is reduced to R′. Let M be C1[R]. Assume M1 →ls N1. We will show
N →+ N1 by considering cases according to R and LE.

Case 1. R is LEE1 and E is [y0.P0, y1.P1]. If L is H [x0.L0, x1.L1],
then R′ is H [x0.L0, x1.L1][y0.P0E1, y1.P1E1], M1 is C1[R′], and N is
C1[H [x0.L0E, x1.L1E]E1]. The leftmost short redex of M1 is R′, so N1

is C1[H [x0.L0[y0.P0E1, y1.P1E1], x1.L1[y0.P0E1, y1.P1E1]]]. So we have N →
C1[H [x0.L0EE1, x1.L1EE1]]→∗ N1. If L is (μα.M) with α ∈ FN(M), the claim
is proved similarly.

Case 2. R is in E. Then M1 is C[LE′] where E → E′. If L is H [x0.L0, x1.L1],
then N is C[H [x0.L0E, x1.L1E]], and N1 is C[H [x0.L0E

′, x1.L1E
′]], since the

leftmost short redex of M1 is LE′. So we have N → C[H [x0.L0E
′, x1.L1E]] →

N1. If L is (μα.M) with α ∈ FN(M), the claim is proved similarly.
The other cases are proved in a similar way. Hence we have N →+ N1.
Since ||M || is the maximum length and M → N , we have ||M || ≥ ||N || + 1.

On the other hand, we have ||M || ≤ ||N ||+1, since ||N || ≥ ||N1||+1 = ||M1|| =
||M || − 1 by induction hypothesis ||M1|| = ||N1|| + 1. Therefore we have the
claim. �

Definition 4.4 (Innermost null reduction). Innermost null reduction
M →in M ′ is defined to hold if M →n M ′ holds, M does not have any effec-
tive redex, and its redex is innermost.

If a term M does not have any effective redex, then the innermost null reduc-
tion strategy gives us a reduction sequence of the maximum length. The next
proposition shows it.
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Proposition 4.5. If M is strongly normalizing, M does not have any effective
redex, and M →in N , then ||M || = ||N ||+ 1.

Proof. The claim is proved in a similar way to Proposition 4.3. �

We will explain why |M | gives k if we have a reduction sequence M → M1 →
. . . → Mk of the maximum length. First, we will group redexes used in the
reduction sequence according to their origins. Counting the number of reduction
steps is the same as counting the number of redexes chosen in each reduction
step.

Every redex R in the reduction sequence has its origin R′ in M . If a new
redex R is obtained by copying a redex R′ by reduction, then the origin of R is
defined as R′. If a new redex R is created by reducing a redex R′, then the origin
of R is defined as R′. For example, when M1 = (μα.[α]x)((μβ.[β]y)z) reduces
to M2 = μα.[α]x((μβ.[β]y)z), then the origin of (μβ.[β]y)z in M2 is (μβ.[β]y)z
in M1. When M1 = (μα.[α](μβ.[β]x))zw reduces to M2 = (μα.[α](μβ.[β]x)z)w,
then the origin of (μβ.[β]x)z in M2 is (μα.[α](μβ.[β]x))z in M1.

All the redexes in the reduction sequence are grouped according to their ori-
gins. Let M be C[NE] and NE be a redex. Let X be the set of the redexes R
such that R is chosen in the reduction sequence and the origin of R is NE. Let
|M |C be the number of elements in X . Then we have ||M || = ΣM=C[NE]|M |C .

Secondly, we will evaluate each term |M |C . For simplicity, suppose M does not
have any null redex. Let M be C[NE]. Each term |M |C is calculated by counting
the steps of context-argument reduction for C[N ·] by leftmost short reduction.
Hence we have |M |C = |C|l|N · |n. Remark that this description relies on the
facts that (1) the number of copies of NE in M is determined only by C and it
does not depend on NE, and (2) the number of steps with redexes that come
from NE is determined by only N and |C|l and it does not depend on C nor E.
This property holds also when M has some null redexes.

Finally, combining these two equations, we have our description |M | =
ΣM=C[NE]|C|l|N ·|n. Note that this formula says that the maximum length forM
is obtained by the sum of the maximum lengths of context-argument reduction
sequences for each C[N ·]. This is because counting the steps of context-argument
reduction by leftmost short reduction is the same as counting the maximum steps
of context-argument reduction.

5 Proof of Maximum Length

This section will prove that |M | is the maximum length of reduction. This proof
will also directly show that leftmost short reduction strategy and innermost null
reduction strategy produce the longest reduction sequence.

We will fix a fresh variable 6. When a multicontextM has n holes and 1 ≤ i ≤
n, M(i) denotes the context obtained from M by substituting the fresh variable
6 for all the holes except the i-th hole. For example, when M = x(y·)(z·)(w·),
we have M(1) = x(y·)(z6)(w6) and M(2) = x(y6)(z·)(w6).

Context-function reduction C →cf C′ is defined to hold if C → C′ holds and
its redex is of the form C1E.
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We will use notation like M →e,nca M
′ to denote thatM →e M

′ and M →nca

M ′.

Lemma 5.1. (1) Tr(C[α∗ := E]) = Tr(C).
(2) |C[E ]|l = |C|l|E|l.
(3) If C →e C′ or C →cf C′ holds and C′ has n holes, then |C|l = Σn

i=1|C′(i)|l.
(4) If C →e,nca C′, then Tr(C) = Tr(C′).

Proof. (1) By induction on 5C.
(2) By induction on 5C.
(3) By induction on 5C. We will discuss several cases when C is a redex. Cases

1 to 3 are for C →cf C′, and Cases 4 to 7 are for C →e C′. The other cases will
be similarly shown by induction hypothesis.

Case 1. (μα.D)N → μα.D[α∗ := N ]. The right-hand side |C′|l equals |D[α∗ :=
N ]|l by definition. By (1), it equals |D|l, which equals |C|l by definition.

Case 2. M [x0.D, x1.N1]E → M [x0.DE, x1.N1E]. The right-hand side |C′|l
equals |M · |l|D|l and |C|l by definition and (2).

The case M [x0.N0, x1.D]E →M [x0.N0E, x1.DE] is proved similarly.
Case 3. D[x0.N0, x1.N1]E → D[x0.N0E, x1.N1E]. By definition, the left-hand

side and the right-hand side equal |D|l.
Case 4.H [x0.N0, x1.N1] 4E[y0.L0, y1.L1]E → H [x0.N0, x1.N1] 4E[y0.L0E , y1.L1E ].

The right-hand side is |H [x0.N0, x1.N1] 4E[y0.L0E , y1.L1E [6]]|l + |H [x0.N0, x1.N1]
4E[y0.L0E [6], y1.L1E ]|l, which equals |N0

4E[y0.L0E , y1.L1E [6]]|l + |N1
4E[y0.L0E ,

y1.L1E [6]]|l + |N0
4E[y0.L0E [6], y1.L1E ]|l + |N1

4E[y0.L0E [6], y1.L1E ]|l by definition.
By induction hypothesis, it equals |N0

4E[y0.L0, y1.L1]E|l + |N1
4E[y0.L0, y1.L1]E|l,

which equals the left-hand side by definition.
Case 5. H [x0.N0, x1.N1]E → H [x0.N0E , x1.N1E ]. This case is proved similarly

to Case 7.
Case 6. (μα.M) 4E[x0.N0, x1.N1]E → (μα.M) 4E[x0.N0E , x1.N1E ]. This case is

proved similarly to Case 4.
Case 7. (μα.M)E → μα.M [α∗ := E ]. Let M = Di[[α]Ni]. We write D′

i and
N ′

i for Di[α∗ := E [6]] and Ni[α∗ := E [6]] respectively. C′(i) is μα.D′
j [[α]N ′

jE ]
for some j. The right-hand side Σi|C′(i)|l equals Σi|D′

i[[α]N ′
iE ]|l. By (2), each

term |D′
i[[α]N ′

iE ]|l equals |D′
i|l|N ′

iE|l. By (1), it equals |Di|l|NiE|l. Hence we have
Σi|C′(i)|l = Σi|Di|l|NiE|l, which equals |C|l by the definion of Tr((μα.M)E).

(4) By induction on 5C. We will consider cases according to C → C′.
Case 1. (μα.M) 4EE → (μα.M ′) 4EE .
Let M = Di[[α]Ni] for 1 ≤ i ≤ n.

Then the tree Tr(C) is

�
�

�
�

�

	
	

	
	

	

0

|Di|l

Tr(Ni
4EE)

· · ·

We will show that each branch for Tr(Ni
4EE) will be preserved by the

reduction.
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Case 1.1. The redex is outside [α]Ni. Then we have M ′ = D′
i[[α]Ni] and

Di →e D′
i. By (3), we get |D′

i|l = |Di|l. Hence the branch is preserved.
Case 1.2. The function part of the redex includes [α]Ni. Then we have M ′ =

D′
i[[α]N ′

i ], Di →cf D′
i, and N ′

i = Ni[β∗ := L] for some β and L. By (3), we
have |D′

i|l = |Di|l. By (1), we have Tr(N ′
i
4EE) = Tr(Ni

4EE). Hence the branch is
preserved.

Case 1.3. The argument part of the redex includes [α]Ni. Then we have M ′ =
D′

i[[α]Ni] and Di →e D′
i. Note that D′

i may have more than one holes. By (3),
we have |Di|l = Σj |D′(j)

i |l. Hence the branch is preserved.
Case 1.4. The redex is included in [α]Ni. Then we have M ′ = Di[[α]N ′

i ] and
Ni →e N

′
i . Hence we have Ni

4EE →e,nca N ′
i
4EE . By induction hypothesis, we

have Tr(Ni
4EE) = Tr(N ′

i
4EE). Hence the branch is preserved.

Case 2. (μα.M) 4E[y0.D, y1.L1]E → (μα.M) 4E[y0.DE, y1.L1E]. Let M = Ci

[[α]Ni]. A child node of Tr(C) is Tr(Ni
4E[y0.D, y1.L1]E). By induction hypothesis,

it equals Tr(Ni
4E[y0.DE, y1.L1E]), which gives a child node of Tr(C′).

Case 3. (μα.D)E → μα.D[α∗ := E]. We have Tr(C) = Tr(D) by definition.
By (1), it equals Tr(D[α∗ := E]), which equals Tr(C′).

The other cases are proved in a similar way to Cases 2 and 3. �

Lemma 5.2. (1) |ME · |n = |M · |l|xE · |n + |M · |n holds.
(2) |M [x0.N0, x1.N1] · |n ≥ 1 + |M · |l(|N0 · |n + |N1 · |n) holds.

Proof. (1) Induction on 5M .
Case 1. M = H and E = N for some head constructor H and some term N .

The left-hand side equals |HN · |n = 0 by definition, which equals the right-hand
side since |H · |n = 0 and |xN · |n = 0.

Case 2. M = H for some head constructor H and E = [x0.N0, x1.N1]. The
left-hand side equals 1+|N0·|n+|N1·|n by definition, which equals the right-hand
side since |H · |l = 1, |H · |n = 0, and |x[x0.N0, x1.N1] · |n = 1+ |N0 · |n + |N1 · |n.

Case 3. M = H [y0.N0, y1.N1] 4E. By definition the left-hand side equals 1 +
|N0

4EE · |n + |N1
4EE · |n. By induction hypothesis, it equals 1+ |N0

4E · |l|xE · |n +
|N0

4E · |n + |N1
4E · |l|xE · |n + |N1

4E · |n. By definition it equals the right-hand side
since |H [x0.N0, x1.N1] 4E · |l = |N0

4E · |l + |N1
4E · |l and |H [x0.N0, x1.N1] 4E · |n =

1 + |N0
4E · |n + |N1

4E · |n
Case 4. M = (μα.L) 4E and α ∈ FN(L). Let L be Ci[[α]Ni] (1 ≤ i ≤ n). By

definition the left-hand is 1 + Σn
i=1|Ci|l|Ni

4EE · |n. By induction hypothesis it
equals 1 + Σn

i=1|Ci|l(|Ni
4E · |l|xE · |n + |Ni

4E · |n). It equals the left-hand side,
since |(μα.L) 4E · |l = Σi|Ci|l|Ni

4E · |l and |(μα.L) 4E · |n = 1 +Σi|Ci|l|Ni
4E · |n

Case 5. M = (μα.L) 4E and α �∈ FN(L). The claim is proved similarly to
Case 4.

(2) By letting E be [x0.N0, x1.N1] in (1), we have the right-hand side |M ·|l(1+
|N0·|n+|N1·|n)+|M ·|n, which is equal to or greater than 1+|M ·|l(|N0·|n+|N1·|n),
since |M · |l ≥ 1 and |M · |n ≥ 0. �

Definition 5.3. Suppose C[NE] reduces to M with its redex R, R is not NE,
and N ′E′ is a redex in M . We say N ′E′ is inherited from NE when (1) R is in
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C, the reduction does not change NE, and N ′E′ is NE, (2) the reduction copies
NE and N ′E′ is a copy of it, (3) R is inside either N or E, and NE reduces to
N ′E′, or (4) R is (μα.P )Q, NE is inside P , and N ′E′ is (NE)[α∗ := Q].

The next lemma guarantees that each term |C|l|N ·|n is unchanged under effective
reduction if its redex is not NE.

Lemma 5.4. If C[NE] →e M[N ′E′] holds, its redex is not NE, and N ′E′ is
inherited from NE, then |C|l = Σi|M(i)|l and |N · |n = |N ′ · |n hold.

Proof. Let the redex of the reduction be R. Let R be PF for some term P and
some eliminator F . We will consider cases according to R and NE.

Case 1. R is outside NE or F includes NE. Then we have N ′ = N and
C →e M. By Lemma 5.1 (3), we have |C|l = Σi|M(i)|l. Hence we have the
claim.

Case 2. P includes NE. Then we have C →cf M and N ′ = N [α∗ := L] for
some α and L. By Lemma 5.1 (3), we have |C|l = |M|l. By Lemma 5.1 (1), we
get |N ′|n = |N |n.

Case 3. N includes R. Then we haveM = C. Since N · →e,nca N
′·, By Lemma

5.1 (4), we have |N · |n = |N ′ · |n.
Case 4. E includes R. Then we have M = C and N ′ = N . �

The next proposition says that |M | decreases by effective reduction.

Proposition 5.5. (1) If M →s M
′ holds with the redex R and M = C[R], we

have |M | = |M ′|+ |C|l.
(2) If M →e M ′ holds with the redex R and M = C[R], we have |M | ≥

|M ′|+ |C|l.

Proof. (1) The definition gives us

|M | = ΣM=D[NE]|D|l|N · |n,
|M ′| = ΣM ′=D′[N ′E′]|D′|l|N ′ · |n.

Let R be the redex PF for some term P and some eliminator F .
All the redexes in M ′ are (a) those inherited from all the redexes in M except

R and (b) new redexes PjFj created by the reduction.
For (a), Lemma 5.4 gives |D|l|N · |n = Σi|M(i)|l|N ′ · |n for each redex N ′E′

in M ′ inherited from the redex NE in M where D → M or D = M and
M ′ =M[N ′E′].

For (b), we will show |C|l|P · |n = |C|l + Σi|Ci|l|Pi · |n where M ′ = Ci[PiFi].
Let R→ R′. We will consider cases according to P .

Case 1. P = H [x0.N0, x1.N1] for some head constructor H . We have R′ =
H [x0.N0F, x1.N1F ]. Then the right-hand side is |C|l + |C[H [x0. ·, x1.N1F ]]|l|N0 ·
|n + |C[H [x0.N0F, x1. ·]]|l|N1 · |n, which equals |C|l + |C|l|N0 · |n + |C|l|N1 · |n
by definition. By the definition of the tree, we have |H [x0.N0, x1.N1] · |n =
1 + |N0 · |n + |N1 · |n. Hence the left-hand side |C|l|P · |n equals the right-hand
side.



The Maximum Length of Mu-Reduction in Lambda Mu-Calculus 371

Case 2. P = μα.S and α ∈ FN(S). We have R′ = μα.S[α∗ := F ]. Let
S = Ci[[α]Qi] for 1 ≤ i ≤ n. Let C′i and Q′

i be Ci[α∗ := F ] and Qi[α∗ :=
F ] respectively. Then the right-hand side is |C|l + Σi|C[μα.C′i[[α]·]]|l|Q′

i · |n. By
Lemma 5.1 (2), it equals |C|l + Σi|C|l|C′i|l|Q′

i · |n. By Lemma 5.1 (1), it equals
|C|l + Σi|C|l|Ci|l|Qi · |n. By the definition of the tree, we have |(μα.S) · |n =
1 +Σi|Ci|l|Qi · |n. Hence the left-hand side |C|l|P · |n equals the right-hand side.

Case 3. P = (μα.M) 4N [x0.N0, x1.N1] and α �∈ FN(M). We have R′ =
(μα.M) 4N [x0.N0F, x1.N1F ]. This case is proved similarly to Case 1.

(2) This claim is proved similarly to (1). For (a), the same equation is proved
in the same way. For (b), instead we will prove |C|l|P · |n ≥ |C|l +Σi|Ci|l|Pi · |n
where M ′ = Ci[PiFi]. Instead of Cases 1 and 3 in (1), we have the next case.

Case 1. P = M [x0.N0, x1.N1]. We have R′ = M [x0.N0F, x1.N1F ]. This case
is prove by using Lemma 5.2 (2). �

The eliminator E is called an effective argument in M if M has a subterm of the
form either (μα.M) 4EE with α ∈ FN(M) or N [x0.N0, x1.N1] 4EE. Then E will
be used as an argument of some effective reduction.

Lemma 5.6. If the hole is not in any effective argument in C, then Tr(C) = n
holds for some n.

Proof. By induction on 5C. We will discuss only a non-trivial case.
Case 1. C = (μα.M) 4NC1 and α �∈ FN(M). By the definition, we have Tr(C) =

Tr(C1)+. By induction hypothesis, we have Tr(C1) = n for some n. Hence Tr(C) =
n+ 1 holds. �

The next theorem states main property for leftmost short reduction.

Theorem 5.7. If M →ls M
′ holds, then |M | = |M ′|+ 1 holds.

Proof. Let M = C[R]→ls M
′ = C[R′] and R be the redex. Since R is the leftmost

short redex in M , the hole is not in any effective argument in C. By Lemma 5.6,
we have |C|l = 1. By Theorem 5.5 (1), we get the claim. �

The next theorem says that |M | decreases by null reduction.

Theorem 5.8. (1) If M →n M
′ holds, then |M | ≥ |M ′|+ 1 holds.

(2) If M →in M
′ holds, then |M | = |M ′|+ 1 holds.

Proof. (1) Let M = C[(μα.N)L] and M ′ = C[μα.N ]. By definition we have
|M | − |M ′| = |C|l|(μα.N) · |n +ΣL=D[PQ]|C[(μα.N)D]|l|P · |n ≥ |C|l|(μα.N) · |n.
By definition, we have Tr((μα.N)·) = 1. Hence we have |C|l|(μα.N) · |n ≥ 1 and
we get the claim.

(2) In a similar way to (1), we have |M | − |M ′| = |C|l|(μα.N) · |n, since the
redex (μα.N)L is innermost and L does not include any redex. By Lemma 5.6,
we have |C|l = 1. So the right-hand side equals 1 and we have the claim. �

Proposition 5.9. If M → N , then |M | > |N |.

Proof. If M → N is effective, the claim follows from Proposition 5.5 (2). If
M → N is null, we have the claim from Theorem 5.8 (1). �
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Theorem 5.10. |M | is the maximum length of reduction steps for a term M .

Proof. First we will show that |M | is an upper bound of any length of reduction
steps. If M → M1 → M2 → . . . → Mn holds, then by Proposition 5.9, we have
|M | > |M1| > |M2| > . . . > |Mn| ≥ 0. Therefore we have |M | ≥ n.

Secondly, we will show |M | is the maximum by induction on |M |. To do that,
we will construct a reduction sequence beginning with M with |M | steps. If
|M | = 0, we have the reduction sequence M of length 0, so we have the claim.
Suppose |M | > 0. By definition of |M |, M has some redex.

We have M ′ such that M →M ′ and |M | = |M ′|+1. This is shown as follows.
If M has an effective redex, we have M →ls M

′ for some M ′. By Theorem 5.7,
|M | = |M ′| + 1 holds. If M does not have any effective redex, there is a null
redex. We have M →in M ′ for some M ′. By Theorem 5.8 (2), |M | = |M ′| + 1
holds.

By induction hypothesis for M ′, we have a reduction sequence M ′ → . . .→ N
with |M ′| steps. Hence we have a reduction sequence M →M ′ → . . .→ N with
|M | steps. �

This proof gives us the following reduction strategy for choosing a redex to be
reduced in a term M .

1. Leftmost short reduction. If M has an effective redex, then some head part
of the redex is a short redex, so we choose the leftmost short redex.

2. Innermost null reduction. If M does not have any effective redex, we choose
an innermost null redex.

This proof also showed that this strategy actually gives the longest reduction
sequence.

6 Concluding Remarks

The results of this paper are based on the property that the maximum steps
for each redex can be calculated independently of the other redexes, and the
maximum steps for a term can be obtained as the sum of the maximum steps
for all the redexes.

Future work will be applying this technique to μμ′-reduction in symmetric
λμ-calculus.

Another future work will be giving a small upper bound for μ-reduction steps
by using the exact count achieved in this paper. We had |M | = ΣM=C[NE]|C|l|N ·
|n. By easy estimation, the number of applications NE is less than 5M , and we
have |C|l ≤ 2�M and |N · |n ≤ 2(�M)2/2. So we have |M | ≤ 5M · 2�M+(�M)2/2.
Further investigation will improve this upper bound.
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On Linear Combinations of λ-Terms
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Abstract. We define an extension of λ-calculus with linear combina-
tions, endowing the set of terms with a structure of R-module, where R
is a fixed set of scalars. Terms are moreover subject to identities simi-
lar to usual pointwise definition of linear combinations of functions with
values in a vector space. We then extend β-reduction on those algebraic
λ-terms as follows: at+ u reduces to at′ + u as soon as term t reduces to
t′ and a is a non-zero scalar. We prove that reduction is confluent.

Under the assumption that the set R of scalars is positive (i.e. a sum
of scalars is zero iff all of them are zero), we show that this algebraic λ-
calculus is a conservative extension of ordinary λ-calculus. On the other
hand, we show that if R admits negative elements, then every term re-
duces to every other term.

Preliminary Definitions and Notations. Recall that a rig (or “semi-ring with
zero and unit”) is the same as a ring, without the condition that every element
admits an opposite for addition. Let R be a rig. We write R• for R \ {0}. We
denote by letters a, b, c the elements of R, and say that R is positive if, for all
a, b ∈ R, a + b = 0 implies a = 0 and b = 0. An example of positive rig is N,
the set of natural numbers, with usual operations. Also, we write application of
λ-terms à la Krivine: (s) t denotes the application of term s to term t.

1 Introduction

Sums of terms arise naturally in the study of differentiation in λ-calculus [ER03]
or λμ-calculus [Vau07]. In this setting, non-deterministic choice provides a pos-
sible computational interpretation of sum. In differential λ-calculus, however, a
more general pattern is introduced: the set of terms is endowed with a structure
of R-module, where R is a commutative rig, and one can form linear combina-
tions of terms. Moreover, in the same way as functions with values in a vector
space also form a vector space with operations defined pointwise, we have the
following two equalities on terms:

λx

(
n∑

i=1

aisi

)
=

n∑
i=1

aiλx si and

(
n∑

i=1

aisi

)
u =

n∑
i=1

ai (si)u (1)

for all linear combination
∑n

i=1 aisi of terms. This mimics the quantitative se-
mantics of λ-calculus in finiteness spaces [Ehr05]: types are interpreted by partic-
ular vector spaces or, more generally, modules, and terms are mapped to analytic
functions defined by power series on these spaces.

F. Baader (Ed.): RTA 2007, LNCS 4533, pp. 374–388, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Apart from the notion of differentiation, one important feature of the above-
mentioned works is the way β-reduction is extended to such linear combinations
of terms. Among terms, some are considered simple: they contain no sum in
linear position, so that (1) does not apply; hence they are intrinsically not sums.
These form a basis of the R-module of terms. Reduction → is then the least
contextual relation such that: if s is a simple term, then

(λx s) t→ s [t/x] (2)

and, if a ∈ R• is a non-zero scalar,

s→ s′ implies as+ t→ as′ + t . (3)

The condition a �= 0 in that last case ensures that→ actually reduces something,
so that reduction is not trivially reflexive.

The previous definition is both natural in presence of coefficients, and techni-
cally efficient. For instance, it is particularly well suited for proving confluence
via usual Tait-Martin Löf technique: introduce a parallel version 
 of → such
that → ⊆ 
 ⊆ →∗, and prove that 
 has the diamond property. Here 
 is
reflexive and has the following behaviour on linear combinations of terms:

n∑
i=1

aisi 


n∑
i=1

ais
′
i as soon as, for all i, si 
 s′i and si is simple. (4)

Assuming s 
 s′ 
 s′′ are simple terms, we have s+ s′ 
 2s′ and s+ s′ 

s+ s′′: then (4) allows to close that pair of reductions by 2s′ 
 s′ + s′′ and
s+ s′′ 
 s′ + s′′. This would not hold if we had forced the si’s in (4) to be
distinct simple terms — that condition would amount to reduce each element of
the base of simple terms, in parallel, which may seem a more natural choice at
first.

In [Vau07], however, the author proved that this notion of reduction collapses
as soon as the rig of scalars admits negative elements: if −1 ∈ R (so that 1 +
(−1) = 0), then for all terms s and t, s→∗ t. This should not be a surprise, since
in that case the system involves both negative numbers and potential infinity
through arbitrary fixed points: in that setting, one can’t hope to implement (1)
and still obtain both confluence and coherence of β-reduction.

Also, our notion of reduction does not always fit well with normalization:
assume s→ s′ and R contains dyadic rationals; then

s =
1
2
s+

1
2
s → 1

2
s+

1
2
s′ → 1

4
s+

3
4
s′ → · · ·

Contributions. In this paper, we give a framework for the study of terms with
linear combinations, which aims to be more precise and formal than that devel-
oped in [ER03] or [Vau07]. Also, we do not consider differentiation nor classical
control operators, and only focus on the algebraic structure of terms and the
interaction between coefficients and reduction. We call the obtained system al-
gebraic λ-calculus.
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In section 2, we formalize the definition of the R-module of terms; in particular,
we implement the identities of (1), orienting then from left to right; then we
identify terms up to equality of canonical forms. This definition is elementary
enough that it should be easily implemented in a logical system such as [Coq]
(assuming an implementation of R). In section 3 we define reduction, using rule
(3) in the case of a sum, and discuss conservativity w.r.t. ordinary β-reduction.
In section 4, we briefly review sufficient conditions for normalization: the reader
may refer to [Vau06] for a full development on that matter. Last, we discuss
possible other approaches and further work in section 5.

Most of the results of this paper were already present in [Vau07], and some
can be traced back to [ER03]. In those two previous works, however, the focus
was on differentiation and the presence of linear combinations of terms and their
effects on reduction were considered of marginal interest. This may in particular
explain why some of the problems we insist on in this paper eluded [ER03].

2 Linear Combinations of Terms

In this section, we introduce the set of terms of algebraic λ-calculus in several
steps. First we give a grammar of terms, on which we define α-equivalence and
substitution as in Krivine’s [Kri90]. Then we define canonical forms of terms;
this endows the set of terms with a structure of module, by identifying terms up
to equality of canonical forms.

2.1 Raw Terms

Let be given a denumerable set V of variables. We use letters among x, y, z to
denote variables.

Definition 1. The set LR of raw terms (denoted by greek letters σ, τ, . . .) of
algebraic λ-calculus over R is given by the following grammar:

σ, τ, . . . ::= x | λxσ | (σ) τ | 0 | aσ | σ + τ .

Definition 2. We define free variables of terms as follows:

– variable x is free in term y if x = y;
– variable x is free in λy σ if x �= y and x is free in σ;
– variable x is free in (σ) τ if x is free in σ or in τ ;
– no variable is free in 0;
– variable x is free in aσ if x is free in σ;
– variable x is free in term σ + τ if x is free in σ or in τ .

From this definition of free variables, we derive α-equivalence and substitution as
in [Kri90]. We write σ ∼ τ when σ is α-convertible to τ , and we write σ [τ/x] for
the (capture-avoiding) substitution of τ for x in σ. More generally, if x1, . . . , xn

are distinct variables and τ1, . . . , τn are terms, we write σ [τ1, . . . , τn/x1, . . . , xn]
for the simultaneous substitution of each τi for each xi in σ. Recall the following
definitions and properties from [Kri90].
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Proposition 1. For all terms σ, τ1, . . . , τn, υ1, . . . , υp and all distinct variables
x1, . . . , xn, y1, . . . , yp,

σ [τ1, . . . , τn/x1, . . . , xn] [υ1, . . . , υp/y1, . . . , yp]
∼ σ [υ1, . . . , υp, τ

′
1, . . . , τ

′
n/y1, . . . , yp, x1, . . . , xn]

where τ ′i = τi [υ1, . . . , υp/y1, . . . , yp].

Definition 3. A binary relation r on raw terms is said to be contextual if it
satisfies the following conditions:

– x r x;
– λxσ r λxσ′ as soon as σ r σ′;
– (σ) τ r (σ′) τ ′ as soon as σ r σ′ and τ r τ ′;
– 0 r 0;
– aσ r aσ′ as soon as σ r σ′;
– σ + τ r σ′ + τ ′ as soon as σ r σ′ and τ r τ ′.

Proposition 2. If r is a contextual relation, then σ [τ/x] r σ [τ ′/x] as soon as
τ r τ ′.

Proposition 3. Relation ∼ is a contextual equivalence relation.

2.2 Permutative Equality

If σ1, . . . , σn ∈ LR, then we write σ1 + · · ·+ σn for σ1 + (· · ·+ σn). If, moreover,
a1, . . . , an ∈ R then we write

∑n
i=1 aiσi for the term a1σ1 + · · · + anσn + 0.

Linear combinations
∑n

i=1 aiσi should be thought of as multisets of couples, i.e.
we identify

∑n
i=1 aiσi with all

∑n
i=1 af(i)σf(i) where f is any permutation of

{1, . . . , n}. This is more formally stated in the following definition.

Definition 4. Permutative equality ≡ ⊆ LR ×LR is the least contextual equiva-
lence relation on raw terms such that:

– σ ≡ τ as soon as σ ∼ τ ;
– σ + τ ≡ τ + σ for all σ, τ ∈ LR;
– (σ + τ) + υ ≡ σ + τ + υ for all σ, τ, υ ∈ LR.

Notice that
∑n

i=1 aiσi ≡
∑p

j=1 bjτj iff n = p and, for all j, bj = af(j) and
τj ≡ σf(j), with f some fixed permutation of {1, . . . , n}. Also, since free variables
of a sum do not depend on the order of the summands, ≡ preserves free variables.

Permutative equality is the basic equality intended on terms. It states that
we consider terms up to α-equality and that we form linear combinations up to
associativity and commutativity of sum. We write ΛR for the set of terms with
equality ≡. This means that as long we consider σ and τ as terms in ΛR, we say
they are equal if σ ≡ τ . A function defined on ΛR is a function with domain LR

which is invariant by ≡.

Proposition 4. Substitution is well defined on ΛR: if σ ≡ σ′ and τi ≡ τ ′i , for
all i ∈ {1, . . . , n}, then σ [τ1, . . . , τn/x1, . . . , xn] ≡ σ′ [τ ′1, . . . , τ

′
n/x1, . . . , xn] for

all distinct variables x1, . . . , xn.

In the following, if σ and τ ∈ ΛR, we write δ≡σ,τ =
{

1 if σ ≡ τ
0 otherwise.



378 L. Vaux

2.3 The R-Module of Terms

In this subsection, we introduce the algebraic content of the calculus: we endow
the set of terms with a structure of R-module, enjoying usual identities between
linear combinations together with (1). For that purpose, we define canonical
forms of terms, so that equality of terms (in the abovementioned algebraic sense)
amounts to permutative equality on canonical forms.

Definition 5. Atomic terms and canonical terms are defined as follows:

– any variable x is an atomic term;
– let x ∈ V and s an atomic term, then λx s is an atomic term;
– let s an atomic term and T a canonical term, then (s)T is an atomic term;
– let a1, . . . , an ∈ R• and s1, . . . , sn n pairwise distinct ( �≡) atomic terms, then∑n

i=1 aisi is a canonical term.

We consider atomic and canonical terms up to permutative equality. We write
AR for the set of atomic terms and CR for the set of canonical terms, both
endowed with ≡ as identity relation. One defines an injection from atomic terms
into canonical terms, mapping s to the “singleton” 1s+ 0. In the following, we
write σ for term 1σ + 0.

Definition 6. Let σ =
∑n

i=1 aisi be a linear combination of atomic terms. For
all atomic term s, we call coefficient of s in σ the scalar

∑n
i=1 δ

≡
s,si

ai. Then we
define

cansum(σ) =
p∑

j=1

bjtj

where {t1, . . . , tp} is the set (modulo ≡) of those si’s with a non-zero coefficient
in σ and, for all j ∈ {1, . . . , p}, bj is the coefficient of tj in σ.

Hence, if σ is a linear combination of atomic terms, then cansum(σ) is a canonical
term.

Definition 7. Canonization of terms can : ΛR −→ CR is given by

– can(x) = x;
– if can(σ) =

∑n
i=1 aisi then can(λxσ) =

∑n
i=1 aiλx si;

– if can(σ) =
∑n

i=1 aisi and can(τ) = T then can((σ) τ) =
∑n

i=1 ai (si)T ;
– can(0) = 0;
– if can(σ) =

∑n
i=1 aisi then can(aσ) = cansum (

∑n
i=1(aai)si);

– if can(σ) =
∑n

i=1 aisi and can(τ) =
∑n+p

i=n+1 aisi then

can(σ + τ) = cansum

(
n+p∑
i=1

aisi

)
.

It is easily checked that this definition is invariant by ≡.

Proposition 5. Canonization enjoys the following properties.



On Linear Combinations of λ-Terms 379

(i) Variables free in can(σ) are also free in σ. The converse does not hold in
general.

(ii) If s is an atomic term, then can(s) ≡ s.
(iii) If S is a canonical term, then can(S) ≡ S; hence can(can(σ)) ≡ can(σ) for

all term σ.
(iv) For all terms σ and τ and all variable x,

can(σ [τ/x]) ≡ can(can(σ) [can(τ)/x]) .

Definition 8. Algebraic equality is permutative equality of canonical forms:

σ
�= τ if can(σ) ≡ can(τ) .

Although it does not preserve free variables, algebraic equality is a contextual
equivalence relation. Restricted to canonical terms, it is the same as ≡.

Definition 9. A simple term is a term σ such that can(σ) = s with s atomic,
or equivalently such that there exists an atomic term s with s �= σ. We write ΔR

for the set of simple terms, with equality �= and R〈ΔR〉 for the set of all terms,
with equality �=, which is the free R-module generated by (ΔR,

�=).

Lemma 1. If terms σ, σ′, τ and τ ′ are such that σ �= σ′ and τ �= τ ′, then, for
all variable x, σ [τ/x] �= σ′ [τ ′/x].

Proof. This is a straightforward application of Proposition 5.

Hence, algebraic equality is compatible with substitution, i.e. substitution is well
defined on R〈ΔR〉. We now extend the notion of coefficient as follows:

Definition 10. Let σ be a simple term and s an atomic term such that σ �= s.
We define the coefficient of σ in τ , denoted by τ(σ), as the coefficient of s in
can(τ).

We call support of σ the set of those simple terms with a non-zero coefficient in
σ:

Supp(σ) = {τ ∈ ΔR; σ(τ) �= 0} .

Definition 11. If X is a set (modulo �=) of simple terms, we write R〈X 〉 for
the set of linear combinations of elements of X , i.e.

R〈X 〉 =

{
σ

�=
n∑

i=1

aiσi; ∀i ∈ {1, . . . , n}, σi ∈ X
}

or, equivalently,

R〈X 〉 = {σ ∈ R〈ΔR〉; Supp(σ) ⊆ X} .
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Remark 1. One may introduce a convergent rewrite system (modulo associativ-
ity and commutativity of sum [PS81]) R on terms in ΛR, such that σ �= τ iff
NF(σ) ≡ NF(τ) where NF stands for “normal form in R”. For instance, one
may adapt the work by Arrighi and Dowek in [AD05], provided the rig R is
appropriately defined by a scalar rewrite system.

Apart from the added complexity, we do not use this approach simply because
such a rewrite system R would not be part of the reduction rules we introduce
thereafter: we define reduction of terms as (roughly) β-reduction up to �=, and
not as the union of β-reduction and canonization. We then prove confluence
without any assumption on R.

Of course, our approach may suffer from practical drawbacks: unless we have
suitable constructive information on the structure of R, we cannot compute all
the →̃-reducts of a term in general (we actually prove that there may be an
infinity of them in some cases). Also, checking that σ → τ , or even σ

�= τ ,
requires at least that equality in R is decidable.

3 Reductions

In this section, we define reduction using (2) and (3) as key reduction rules:
this captures the definition of reduction in [ER03], minus differentiation, in the
setting of algebraic λ-calculus.

3.1 Reduction and Linear Combinations of Terms

We call algebraic relation from simple terms to terms any subset of ΔR×R〈ΔR〉
(with, of course, the condition that it is invariant under �=). Clearly, if r is an
algebraic relation from simple terms to terms, σ r σ′ holds iff there are t ∈ AR

and T ′ ∈ CR such that σ �= t, σ′ �= T ′ and t r T ′.
Similarly, we call algebraic relation from terms to terms any subset of R〈ΔR〉×

R〈ΔR〉. Again such a relation is uniquely defined by its restriction to CR × CR.
Given an algebraic relation r from simple terms to terms we define two new
algebraic relations r and r̃ from terms to terms by:

– σ r σ′ if σ �=
∑n

i=1 aisi and σ′ �=
∑n

i=1 aiS
′
i, where for all i ∈ {1, . . . , n}, si

is atomic, S′
i is canonical and si r S′

i;
– σ r̃ σ′ if σ �= at+ U and σ′ �= aT ′ + U , where a �= 0, t is atomic, T ′ and U

are canonical and t r T ′.

We cannot define reduction by induction on terms: if there are a, b ∈ R• such
that a + b = 0 then 0 �= aσ + bσ for all σ ∈ R〈ΔR〉; hence, by rule (3), 0 may
reduce. We rather define simple term reduction → by induction on the depth of
the fired redex, so that reduction of terms is given by →̃.

Definition 12. We define an increasing sequence of algebraic relations from
simple terms to terms by the following statements. →0 is the empty relation.
Assume →k is defined. Then we set σ →k+1 σ

′ as soon as one of the following
holds:
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– σ
�= λx s and σ′ �= λxS′ with s→k S

′;
– σ

�= (s)T and σ′ �= (S′)T with s→k S
′, or σ′ �= (s)T ′ with T →̃k T

′;
– σ

�= (λx s)T and σ′ �= s [T/x].

Let→ =
⋃

k∈N→k. We call one-step reduction or simply reduction, the algebraic
relation →̃.

Proposition 6. →̃ =
⋃

k∈N →̃k.

Lemma 2. If s ∈ AR and S′, T, T ′ ∈ CR, are such that s → S′ and T →̃ T ′

then:
λx s→ λxS′

(s)T → (S′) T
(s)T → (s)T ′ .

Proof. The first two relations are straightforward from the definition of →. The
same holds for the third one, through proposition 6.

Let →̃∗ be the reflexive and transitive closure of →̃.

Lemma 3. The relation →̃∗ is contextual.

Proof. This results from Lemma 2, using reflexivity, transitivity and the defini-
tion of can.

3.2 Confluence

We prove confluence of →̃ by usual Tait-Martin-Löf technique: introduce a par-
allel extension of reduction (in which redexes can be fired simultaneously) and
prove this enjoys the diamond property (i.e. strong confluence).

Definition 13. We define an increasing sequence of algebraic relations from
simple terms to terms by the following statements. 
0 is algebraic equality.
Assume 
k is defined. Then we set σ 
k+1 σ

′ as soon as one of the following
holds:

– σ
�= λx s and σ′ �= λxS′ with s 
k S

′;
– σ

�= (s)T and σ′ �= (S′)T ′ with s 
k S
′ and T 
k T

′;
– σ

�= (λx s)T and σ′ �= S′ [T ′/x] with s 
k S
′ and T 
k T

′.

Let 
 =
⋃

k∈N 
k. We call parallel reduction the algebraic relation 
.

Proposition 7. 
 =
⋃

k∈N 
k.

Lemma 4. Relation 
 is contextual.

Proof. Like in Lemma 2, this is just rephrasing the definitions of π and π, with
the notable exception of the application case which involves Proposition 7.

Lemma 5. (λxσ) τ 
 σ′ [τ ′/x] as soon as σ 
 σ′ and τ 
 τ ′.

Proof. This is a straightforward consequence of Lemma 4 and the definitions of

 and can(λxσ).

Lemma 6. →̃ ⊂ 
 ⊂ →̃∗.

Proof. →̃ ⊂ 
 should be clear. 
 ⊂ →̃∗ follows from contextuality of →̃∗.
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Reductions and Substitution. The main property of parallel reduction is the
following one, which fails for one-step reduction.

Lemma 7. Let x be a variable and σ, τ, σ′, τ ′ be terms. If σ 
 σ′ and τ 
 τ ′

then
σ [τ/x] 
 σ′ [τ ′/x] .

Proof. We prove by induction on k that if σ 
k σ
′ and τ 
 τ ′ then σ [τ/x] 


σ′ [τ ′/x] . If k = 0 then σ′ �= σ
�= can(σ); then by Lemmas 1 and 4, and Propo-

sition 2, we have

σ [τ/x] �= can(σ) [τ/x] 
 can(σ) [τ ′/x] �= σ′ [τ ′/x] .

Suppose the result holds for some k, then we extend it to k + 1 by inspecting
the possible cases for reduction σ 
k+1 σ

′. We first address the case in which σ
is simple and σ 
k+1 σ

′. Then one of the following statements applies:

– σ
�= λy t with y �= x and y not free in τ , and σ′ �= λy T ′ with t 
k T

′; hence,
by induction hypothesis, t [τ/x] 
 T ′ [τ ′/x] and we get

σ [τ/x] �= λy t [τ/x] 
 λy T ′ [τ ′/x] �= σ′ [τ ′/x]

by Lemma 4;
– σ

�= (t)V and σ′
�= (T ′)V ′ with t 
k T ′ and V 
k V ′: by induction

hypothesis, t [τ/x] 
 T ′ [τ ′/x] and V [τ/x] 
 V ′ [τ ′/x] and we get

σ [τ/x] �= (t [τ/x])V [τ/x] 
 (T ′ [τ ′/x])V ′ [τ ′/x] �= σ′ [τ ′/x]

by Lemma 4;
– σ

�= (λy t)V and σ′
�= T ′ [V ′/y] with t 
k T

′, V 
k V
′, x �= y and y not

free in τ : by induction hypothesis, t [τ/x] 
 T ′ [τ ′/x], V [τ/x] 
 V ′ [τ ′/x]
and we get

σ [τ/x] �= (λy t [τ/x]) V [τ/x] 
 (T ′ [τ ′/x]) [V ′ [τ ′/x]/y] �= σ′ [τ ′/x] .

by Lemma 5.

Now assume σ 
k+1 σ′. By definition, this amounts to the following: σ �=∑n
i=1 aisi and σ

�=
∑n

i=1 aiS
′
i, with si 
k+1 S

′
i for all i. We have just shown

that we then have si [τ/x] 
 S′
i [τ ′/x]. We conclude by lemma 4.

From Lemmas 6 and 7, we can derive a very similar result for →̃∗:

Corollary 1. Let x be a variable and σ, τ, σ′, τ ′ be terms. If σ →̃∗
σ′ and τ →̃∗

τ ′ then
σ [τ/x] →̃∗

σ′ [τ ′/x] .
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Church-Rosser. We finish the proof of confluence by showing that the 
-reducts
of a fixed term σ all 
-reduce to one of them (obtained by firing all redexes of
σ, simultaneously).

Definition 14. We define inductively on canonical term S its full parallel reduct
S↓ by:

x↓ �= x

(λx s) ↓ �= λx s↓
((λx s)T ) ↓ �= (s↓) [T ↓/x]

((s)T ) ↓ �= (s↓) T ↓ if s is a variable or an application(
n∑

i=1

aisi

)
↓ �=

n∑
i=1

aisi↓ .

For all term σ, we set σ↓ �= can(σ)↓.

Lemma 8. If σ and σ′ are such that σ 
 σ′, then σ′ 
 σ↓.

Proof. One simply proves by induction on k that if σ 
k σ
′ then σ′ 
 σ↓, using

Lemma 7.

Theorem 1. Relation 
 is strongly confluent. Hence, relation →̃ enjoys the
Church-Rosser property.

Proof. Strong confluence of 
 is a straightforward corollary of lemma 8. It
implies confluence of →̃ by Lemma 6.

Trivia. There is a case in which confluence is much easier to establish: if 1 admits
an opposite −1 ∈ R. In this case, assume σ →̃∗

σ′. Since →̃∗ is algebraic and
contextual, σ′ �= σ′+(−1)σ+σ →̃∗ σ′+(−1)σ′+σ �= σ. Hence →̃∗ is symmetric,
which obviously implies Church-Rosser. But this has little meaning: in the next
section, we show that reduction becomes trivial as soon as −1 ∈ R.

3.3 Conservativity

Notice that every ordinary λ-term is also a simple term of algebraic λ-calculus.
Let Λ denote the set of all λ-terms and →β ⊂ Λ × Λ the usual β-reduction of
λ-calculus. It is clear that →β ⊂ →.

Denote by ↔ the reflexive, symmetric and transitive closure of →̃ and ↔β

the usual β-equivalence of λ-calculus.

Lemma 9. Algebraic λ-calculus preserves the equalities of λ-calculus, i.e. for all
λ-terms s and t, s↔β t implies s↔ t.

Proof. This is a straightforward consequence of the confluence of →β and the
fact that →β ⊂ →̃.
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One may wonder if the reverse also holds, i.e. if equivalence classes of λ-terms
in algebraic λ-calculus are the same as in ordinary λ-calculus. If R is N, then
→̃-reductions from λ-terms are exactly →β-reductions ( �= only amounts to α-
conversion on λ-terms), and the result holds by the same argument as in Lemma
9. In the general case, however, a λ-term does not necessarily reduce to another
λ-term, hence the proof is not as easy.

The Positive Case. In the following, we prove that ↔∩ (Λ × Λ) = ↔β as soon
as R is positive.

Definition 15. We define Λ : CR −→ P(Λ) by the following statements:

Λ (x) = {x}
Λ (λx s) = {λxu; u ∈ Λ (s)}
Λ ((s)T ) = {(u) v; u ∈ Λ (s) and v ∈ Λ (T )}

Λ

(
n∑

i=1

aisi

)
=

n⋃
i=1

Λ (si) .

For all term σ, we set Λ (σ) = Λ (can(σ)).

Proposition 8. If s ∈ Λ, then Λ (s) = {s}.
Lemma 10. If R is positive and terms σ ∈ ΛR and σ′ ∈ ΛR are such that
σ →̃ σ′, then for all s′ ∈ Λ (σ′), either s′ ∈ Λ (σ) or there exists s ∈ Λ (σ) such
that s→β s

′.

Proof. The proof is by induction on the height of the reduction σ →̃ σ′. All
induction steps are straightforward, except for the extension from →k to →̃k:
assume σ �= at + U and σ′

�= aT ′ + U with a �= 0 and t →k T
′. By definition,

Λ (σ′) = Λ (aT ′ + U) ⊆ Λ (T ′) ∪ Λ (U). Moreover, since R is positive, the co-
efficient of t in at + U is non-zero: hence Λ (σ) = Λ (at+ U) = Λ (t) ∪ Λ (U).
Now assume v′ ∈ Λ (σ′): either v′ ∈ Λ (U) ⊂ Λ (σ); or v′ ∈ Λ (T ′), and then, by
induction hypothesis, either v′ ∈ Λ (t) ⊂ Λ (σ) or there exists v ∈ Λ (t) ⊂ Λ (σ)
such that v → v′.

Corollary 2. If R is positive and s ∈ Λ and σ ∈ R〈ΔR〉 are such that s →̃∗
σ,

then for all t ∈ Λ (σ), s→∗
β t.

Lemma 11. If σ and σ′ ∈ R〈ΔR〉 are such that σ 
 σ′ then σ↓ 
 σ′↓.
Proof. The proof is easy and very close to that of Lemma 8.

We define iterated full reduction by σ↓0 �= σ and σ↓n+1 �= (σ↓n) ↓.
Lemma 12. If σ 
n τ then τ →̃∗

σ↓n.

Proof. The proof is by induction on n. If n = 0, σ �= τ
�= σ↓0 and this is

reflexivity of →̃∗. Assume the result holds at rank n. If σ 
n τ 
 τ ′, then,
by induction hypothesis, τ →̃∗ σ↓n. Since →̃∗ is also the transitive closure of

, Lemma 11 entails τ↓ →̃∗

σ↓n+1. By Lemma 8, we have τ ′ 
 τ↓, hence
τ ′ →̃∗

σ↓n+1.



On Linear Combinations of λ-Terms 385

Theorem 2. If R is positive and s, t ∈ Λ are such that s↔ t then s↔β t.

Proof. Assume s, t ∈ Λ and s ↔ t. By the Church-Rosser property of →̃ (The-
orem 1), there exists σ ∈ R〈ΔR〉 such that s →̃∗

σ and t →̃∗
σ. By Lemma

12, there exists some n ∈ N such that σ →̃∗
v = s↓n. Notice that if w ∈ Λ,

then w↓ ∈ Λ, hence v ∈ Λ. We have s →̃∗ v and t →̃∗ v, hence by positivity
of R and Corollary 2, for all v′ ∈ Λ (v) there are s′ ∈ Λ (s) and t′ ∈ Λ (t) such
that s′ →∗

β v′ and t′ →∗
β v′. By proposition 8, Λ (s) = {s}, Λ (t) = {t} and

Λ (v) = {v}, hence the conclusion.

Collapse. If R is not positive, we show that reductional equality collapses: ↔
identifies terms which bear absolutely no relationship with each other.

Lemma 13. Assume, there are a, b ∈ R• such that a+ b = 0, then for all term
σ, 0 →̃∗

aσ →̃∗ 0.

Proof. Take Y a fixed point combinator of λ-calculus, such that (Y ) s →∗
β

(s) (Y ) s for all λ-term s. Write ∞σ for (Y )λx (σ + x); then ∞σ →̃∗
σ +∞σ.

We get:
0 �= a∞σ + b∞σ →̃∗ aσ + a∞σ + b∞σ

�= aσ

and
aσ

�= aσ + a∞σ + b∞σ →̃∗ aσ + a∞σ + bσ + b∞σ
�= 0.

As an immediate corollary, ↔ identifies any two terms as soon as 1 has an
opposite in R.

Corollary 3. If R is such that 1 has an opposite, i.e. −1 ∈ R with 1+(−1) = 0,
then for all terms σ and τ , σ →̃∗

τ .

4 On Normalization

Unsurprisingly, if R is not positive, there is no normal term: assume there are
a, b ∈ R such that a+ b = 0 and a �= 0 and let s ∈ AR and S′ ∈ CR be such that
s → S′; then for all σ ∈ R〈ΔR〉, σ �= as + bs + σ and then σ →̃ aS′ + bs + σ.
Hence every term σ reduces.

Moreover, even if R is positive, it may be the case that the only normalizable
terms are normal terms. Indeed, assume R is the set Q+ of non-negative rational
numbers (which is a positive rig) and let s ∈ AR and S′ ∈ CR be such that s→ S′;
then there is an infinite sequence of reductions from s:

s
�=

1
2
s+

1
2
s →̃ 1

2
s+

1
2
S′ →̃ 1

4
s+

3
4
S′ →̃ · · · →̃ 1

2n
s+

2n − 1
2n

S′ →̃ · · ·

In [ER03], it is proved that if R is the set N of all natural numbers, then simply
typed terms are strongly normalizing. The associated type system is defined on
canonical terms, by adding the following rules for linear combinations:

Γ ) 0 : A
Γ ) σ : A
Γ ) aσ : A

Γ ) σ : A Γ ) τ : A
Γ ) σ + τ : A
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to usual typing rules for variable, abstraction and application. Then one extends
typing to all terms: for all σ ∈ R〈ΔR〉, write Γ ) σ : A iff Γ ) can(σ) : A. The
strong normalization proof is by an adaptation of Tait’s reducibility method, as
presented in [Kri90], using the following key lemma:

Lemma 14. The set of all strongly normalizing terms is the R-submodule of
R〈ΔR〉 generated by simple strongly normalizing terms: i.e. σ is strongly normal-
izing iff, for all s ∈ Supp(σ), s is strongly normalizing.

which is easily established in the case R = N.
In this section, we sketch a proof of strong normalization in a more general

case. A thorough development on normalization, including a full proof of Theo-
rem 3 is provided in [Vau06]. In [Vau07], the author showed that Lemma 14 can
be generalized to any rig R such that:

(i) R is finitely splitting in the sense that, for all a ∈ R, a has finitely many
writings as a sum: {(a1, . . . , an) ∈ (R•)n ; n ∈ N and a = a1 + · · ·+ an} is
always finite;

(ii) the width function w : R −→ N defined by

w (a) = max {n ∈ N; ∃(a1, . . . , an) ∈ (R•)n s.t. a = a1 + · · ·+ an}

is a morphism of rigs: w (a+ b) = w (a) + w (b) and w (ab) = w (a)w (b).

Clearly, these conditions also imply R is positive.

Example 1. Setting R = N satisfies these conditions, with w (n) = n for all
n ∈ N. One more interesting instance is the rig N[ξ1, . . . , ξn] of all polynomials
over indeterminates ξ1, . . . , ξn with non-negative integer coefficients: the width
of polynomial P is its value at point (1, . . . , 1), i.e. the sum of its coefficients.
Conversely, if conditions (i) and (ii) hold in R, then all elements of R are sums
of elements of width 1.

Condition (i) entails that every term has finitely many →̃-reducts. Hence, for all
strongly normalizing term σ, König’s lemma implies that the length of a sequence
of →̃-reductions from σ is bounded. One then proves Lemma 14 by induction on
the maximal length of a sequence of reductions from σ: in this proof, condition
(ii) is crucial to enable the use of the inductive hypothesis.

One can then generalize the proof of strong normalization from [ER03] to this
setting. The reducibility method amounts to consider saturated sets of terms,
which are closed under backwards head linear reduction. Then one proves that
the set N of all strongly normalizing terms is saturated: this involves Lemma 14.
Last, one naturally interprets simple propositional types by saturated subsets of
N , and prove that typable terms lie in the interpretation of their types. As a
corollary, we obtain:

Theorem 3. If R is finitely splitting and w is a morphism of rigs, then all
typable terms are strongly normalizing.
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Theorem 3 may be used to provide a weak normalization result in a more general
case:

Corollary 4. If R is positive, then every typable term admits a normal form.

The algorithm behind Corollary 4 can be sketched as follows, assuming the
term σ ∈ R〈ΔR〉 is typable:

– replace scalars occurring in can(σ) with formal indeterminates;
– the object τ thus obtained can be considered as a term with coefficients in

the free rig generated by indeterminates;
– this rig of polynomials enjoys (i) and (ii), hence Theorem 3 applies, since τ

is also typable;
– replace indeterminates by their values in the normal form of τ : this is the

normal form of σ.

This technique may also be used to reduce terms while temporarily disabling
interaction between reduction and coefficients: replace coefficients in the canoni-
cal form with indeterminates, reduce, then evaluate polynomials. This, however,
does not provide a suitable notion of reduction, since it is not confluent (it is
very similar to reduction →̂ outlined in next section).

5 Other Approaches and Future Work

It is noteworthy that the collapse we described in section 3.3 involves a term
∞σ such that ∞σ →̃∗

nσ + ∞σ, for all n ∈ N: reduction of ∞σ generates a
potentially infinite amount of σ. This is not a surprise, since untyped algebraic
λ-calculus involves both linear algebra and arbitrary fixed points. The raw term
∞σ +(−1)∞σ is then analoguous to the well know indeterminate form∞−∞ of
the affinely extended real line. The collapse of reduction in presence of negative
scalars follows from the fact that we consider 0 �=∞σ −∞σ.

Also, we have seen that the way we defined reduction is problematic w.r.t.
normalization properties: even if R is positive, typable terms needn’t be strongly
normalizing. Here we briefly review some possible other approaches.

Restricting Reduction. One seemingly natural variant of one-step reduction is
the following one. Rather than (3), extend reduction from simple terms to all
terms by:

σ→̂σ′ if σ �= as+ T and σ′ �= aS′ + T , with a �= 0, T(s) = 0 and s→ S′ . (5)

This amounts to restrict the contextuality of reduction to the canonical forms of
terms. This reduction, however, is not confluent: ∞y +(λxx)∞y →̂∗-reduces to
both 2∞y and y+2∞y, and these have no common →̂∗-reduct (many thanks to
the referee who provided this very simple argument). Nonetheless, →̂ is trivially
conservative over ordinary β-reduction: the →̂-reducts of a λ-term are exactly its
β-reducts. Also, →̂ should be well-behaved as far as normalization is concerned:
the trick involving rational coefficients is no longer possible.
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Typing. The restriction we have just suggested diminishes the role of scalar
operations during reduction. Another possible fix to the collapse might involve
typing, in order to ward arbitrary fixed points off. The main problem with that
idea is that, unless the set of scalars is positive, typing is not preserved by re-
duction. Hence, it seems better to study the denotational semantics of ordinary
typed λ-calculus in finiteness spaces [Ehr05] more thoroughly, before investigat-
ing further in that direction.

Restricting Equality. Last, we mention a completely different point of view on
linear combinations of terms. In [AD06], Arrighi and Dowek introduce linear
algebraic λ-calculus. The background setting is quite unrelated: their work pro-
vides a framework for quantum computation; in particular, terms represent linear
operators, hence application is bilinear rather than linear in the function only.
Notwithstanding this distinction, their approach to λ-calculus with linear com-
binations of terms contrasts with ours: consider terms up to ≡ rather than some
variant of �=, and handle the identities between linear combinations, together
with analogues of (1), as reduction rules.

Confronted to problems similar to those we exposed above in presence of
negative coefficients, they opted for a completely different solution, far more
natural in their setting: restrict those reduction rules involving rewriting of linear
combinations to closed terms in normal form. This allows to tame some of the
intrinsic potential infinity of pure λ-calculus, avoiding to consider indeterminate
forms. Up to these restrictions, they prove confluence for the whole system.

It will be particularly interesting to find out whether a similar system can be
succesfully defined in the setting of algebraic λ-calculus.
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Abstract. This paper presents two new approaches to prove termina-
tion of rewrite systems with the Knuth-Bendix order efficiently. The
constraints for the weight function and for the precedence are encoded
in (pseudo-)propositional logic and the resulting formula is tested for
satisfiability. Any satisfying assignment represents a weight function and
a precedence such that the induced Knuth-Bendix order orients the rules
of the encoded rewrite system from left to right.

1 Introduction

This paper is concerned with proving termination of term rewrite systems (TRSs)
with the Knuth-Bendix order (KBO), a method invented by Knuth and Bendix
in [14] well before termination research in term rewriting became a very popular
and competitive endeavor (as witnessed by the annual termination competi-
tion).1 We know of only two termination tools that contain an implementation
of KBO, AProVE [11] and TTT [12], but neither of these tools incorporate KBO
in their fully automatic mode for the TRS category. This is perhaps due to the
fact that the algorithms known for deciding KBO orientability ([5,15]) are not
easy to implement efficiently, despite the fact that the problem is known to be
decidable in polynomial time [15]. The aim of this paper is to make KBO a
more attractive choice for termination tools by presenting two simple encod-
ings of KBO orientability into (pseudo-)propositional logic such that checking
satisfiability of the resulting formula amounts to proving KBO termination.

Kurihara and Kondo [16] were the first to encode a termination method for
term rewriting into propositional logic. They showed how to encode orientability
with respect to the lexicographic path order as a satisfaction problem. Codish et
al. [3] presented a more efficient formulation for the properties of a precedence.
In [4,22] encodings of argument filterings are presented which can be combined
with propositional encodings of reduction pairs in order to obtain logic-based im-
plementations of the dependency pair method. Propositional encodings of other
termination methods are described in [9,10,13].

In Section 2 the necessary definitions for KBO are presented. Section 3 intro-
duces a purely propositional encoding of KBO also describing the optimizations
� This research is supported by FWF (Austrian Science Fund) project P18763. Some
of the results in this paper were first announced in [23].

1 www.lri.fr/~marche/termination-competition

F. Baader (Ed.): RTA 2007, LNCS 4533, pp. 389–403, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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applied in the implementation. In Section 4 an alternative encoding is given
using pseudo-boolean constraints. We compare the power and run times of our
implementations with the ones of AProVE and TTT in Section 5 and show the
enormous gain in efficiency. We draw some conclusions in Section 6. One of
these is that our pseudo-boolean encoding of KBO revealed a bug in MiniSat+.
Section 7 summarizes the main contributions of this paper.

2 Preliminaries

We assume familiarity with the basics of term rewriting (e.g. [2]). In this pre-
liminary section we recall the definition of KBO. A quasi-precedence � (strict
precedence �) is a quasi-order (proper order) on a signature F . Sometimes we
find it convenient to call a quasi-precedence simply precedence. A weight func-
tion for a signature F is a pair (w,w0) consisting of a mapping w : F → N and
a constant w0 > 0 such that w(c) � w0 for every constant c ∈ F . Let F be a
signature and (w,w0) a weight function for F . The weight of a term t ∈ T (F ,V)
is defined as follows:

w(t) =

⎧⎪⎨
⎪⎩
w0 if t is a variable,

w(f) +
n∑

i=1

w(ti) if t = f(t1, . . . , tn).

A weight function (w,w0) is admissible for a quasi-precedence � if f � g for all
function symbols g whenever f is a unary function symbol with w(f) = 0. For a
term t, |t| denotes its size and |t|a for a ∈ F ∪ V denotes how often the symbol
a occurs in t.

Definition 1 ([14,5,19]). Let � be a quasi-precedence and (w,w0) a weight
function. We define the Knuth-Bendix order >kbo on terms inductively as fol-
lows: s >kbo t if |s|x � |t|x for all variables x ∈ V and either

(a) w(s) > w(t), or
(b) w(s) = w(t) and one of the following alternatives holds:

(1) t ∈ V, s ∈ T (F (1), {t}), and s �= t, or
(2) s = f(s1, . . . , sn), t = g(t1, . . . , tm), f ∼ g, and there exists an 1  i 

min{n,m} such that si >kbo ti and sj = tj for all 1  j < i, or
(3) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f � g.

where F (n) denotes the set of all function symbols f ∈ F of arity n. Thus in
case (b)(1) the term s consists of a nonempty sequence of unary function symbols
applied to the variable t.

Specializing the above definition to (the reflexive closure of) a strict precedence,
one obtains the definition of KBO in [2], except that we restrict weight functions
to have range N instead of R. According to [15] this does not decrease the power
of the order.
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Lemma 2. A TRS R is terminating whenever there exist a quasi-precedence �
and a weight function (w,w0) such that R ⊆ >kbo. 	


Example 3. The TRS SK 90.2.422 consisting of the rules

flatten(nil)→ nil rev(nil) → nil

flatten(unit(x)) → flatten(x) rev(unit(x)) → unit(x)
flatten(x++ y)→ flatten(x)++ flatten(y) rev(x++ y)→ rev(y)++ rev(x)

flatten(unit(x)++ y)→ flatten(x)++ flatten(y) rev(rev(x)) → x

flatten(flatten(x)) → flatten(x) (x++ y)++ z → x++(y++ z)
x++ nil→ x nil ++ y → y

is KBO terminating. The weight function (w,w0) with w(flatten) = w(rev) =
w(++) = 0 and w(unit) = w(nil) = w0 = 1 together with the quasi-precedence
flatten ∼ rev � unit � ++ � nil ensures that l >kbo r for all rules l → r.
The use of a quasi-precedence is essential here; the rules flatten(x++ y) →
flatten(x)++ flatten(y) and rev(x++ y) → rev(y)++ rev(x) demand w(flatten) =
w(rev) = 0 but KBO with strict precedence does not allow different unary func-
tions to have weight zero.

One can imagine a more general definition of KBO. For instance, in case (b)(2)
we could demand that sj ∼kbo tj for all 1  j < i where s ∼kbo t if and only
if s ∼ t and w(s) = w(t). Here s ∼ t denotes syntactic equality with respect
to equivalent function symbols of the same arity. Another obvious extension
would be to compare the arguments according to an arbitrary permutation or as
multisets. To keep the discussion and implementation simple, we do not consider
such refinements in the sequel.

3 A Pure SAT Encoding of KBO

In order to give a propositional encoding of KBO termination, we must take
care of representing a precedence and a weight function. For the former we
introduce two sets of new variables X = {Xfg | f, g ∈ F with f �= g} and
Y = {Yfg | f, g ∈ F with f �= g} depending on the underlying signature F
([16,21]). The intended semantics of these variables is that an assignment which
satisfies a variable Xfg corresponds to a precedence with f � g and similarly
Yfg suggests f ∼ g. When dealing with strict precedences it is safe to assign all
Yfg variables to false. For the weight function, symbols are considered in binary
representation and the operations >, =, �, and + must be redefined accordingly.
The propositional encodings of > and = given below are similar to the ones in [3].
To save parentheses we employ the binding hierarchy for the connectives where
+ binds strongest, followed by the relation symbols >, =, and �. The logical
connectives ∨ and ∧ are next in the hierarchy and → and ↔ bind weakest.

2 Labels in sans-serif font refer to TRSs in the Termination Problems Data Base [18].



392 H. Zankl and A. Middeldorp

We fix the number k of bits that is available for representing natural numbers
in binary. Let a < 2k. We denote by a = 〈ak, . . . , a1〉 the binary representation
of a where ak is the most significant bit.

Definition 4. For natural numbers given in binary representation, the opera-
tions >, =, and � are defined as follows (for all 1  j  k):

f >j g =

{
f1 ∧ ¬g1 if j = 1
(fj ∧ ¬gj) ∨

(
(fj ↔ gj) ∧ f >j−1 g

)
if j > 1

f > g = f >k g

f = g =
k∧

i=1

(fi ↔ gi)

f � g = f > g ∨ f = g

Next we define a formula which is satisfiable if and only if the encoded weight
function is admissible for the encoded precedence.

Definition 5. For a weight function (w,w0), let ADM-SAT(w,w0) be the for-
mula

w0 > 0 ∧
∧

c∈F(0)

c � w0 ∧
∧

f∈F(1)

(
f = 0 →

∧
g∈F , f �=g

(Xfg ∨ Yfg)
)

For addition we use pairs. The first component represents the bit representa-
tion and the second component is a propositional formula which encodes the
constraints for each digit.

Definition 6. We define (f , ϕ) + (g, ψ) as (s, ϕ ∧ ψ ∧ γ ∧ σ) with

γ = ¬ck ∧ ¬c0 ∧
k∧

i=1

(
ci ↔ ((fi ∧ gi) ∨ (fi ∧ ci−1) ∨ (gi ∧ ci−1))

)

and

σ =
k∧

i=1

(
si ↔ (fi ⊕ gi ⊕ ci−1)

)

where ci (0  i  k) and si (1  i  k) are fresh variables that represent the
carry and the sum of the addition and ⊕ denotes exclusive or. The condition ¬ck
prevents a possible overflow.

Note that although theoretically not necessary, it is a good idea to introduce
new variables for the sum. The reason is that in consecutive additions each bit fi

and gi is duplicated (twice for the carry and once for the sum) and consequently
using fresh variables for the sum prevents an exponential blowup of the resulting
formula.
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Definition 7. We define (f , ϕ) > (g, ψ) as f > g∧ϕ∧ψ and (f , ϕ) = (g, ψ) as
f = g ∧ ϕ ∧ ψ.

In the next definition we show how the weight of terms is computed propositio-
nally.

Definition 8. Let t be a term and (w,w0) a weight function. The weight of a
term is encoded as follows:

Wt =

⎧⎪⎨
⎪⎩

(w0,*) if t ∈ V,

(f ,*) +
n∑

i=1

Wti if t = f(t1, . . . , tn).

We are now ready to define a propositional formula that reflects the definition
of >kbo.

Definition 9. Let s and t be terms. We define the formula SAT(s >kbo t) as
follows. If s ∈ V or s = t or |s|x < |t|x for some x ∈ V then SAT(s >kbo t) = ⊥.
Otherwise

SAT(s >kbo t) = Ws > Wt ∨
(
Ws = Wt ∧ SAT(s >′

kbo t)
)

with

SAT(s >′
kbo t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

* if t ∈ V, s ∈ T (F (1), {t}), and s �= t

SAT(si >kbo ti) if s = f(s1, . . . , sn), t = f(t1, . . . , tn)
Xfg ∨

(
Yfg ∧ SAT(si >kbo ti)

)
if s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f �= g

where in the second (third) clause i denotes the least 1  j  n (min{n,m})
with sj �= tj.

3.1 Encoding the Precedence in SAT

To ensure the properties of a precedence we follow the approach of Codish et
al. [3] who propose to interpret function symbols as natural numbers. The greater
than or equal to relation then ensures that the function symbols are quasi-
ordered. Let |F| = n. We are looking for a mapping m : F → {1, . . . , n} such
that for every propositional variable Xfg ∈ X we have m(f) > m(g) and for
Yfg ∈ Y we get m(f) = m(g). To uniquely encode one of the n function symbols,
l := <log2(n)= fresh propositional variables are needed. The l-bit representation
of f is 〈f ′l , . . . , f ′1〉 with f ′l the most significant bit.

Definition 10. For all 1  j  l

||Xfg||j =

{
f ′1 ∧ ¬g′1 if j = 1
(f ′j ∧ ¬g′j) ∨

(
(f ′j ↔ g′j) ∧ ||Xfg||j−1

)
if j > 1

||Yfg||l =
l∧

j=1

(f ′j ↔ g′j)
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Note that the variables f ′i (1  i  l) are different from fi (1  i  k) which are
used to represent weights.

Definition 11. Let R be a TRS. The formula KBO-SAT(R) is defined as

ADM-SAT(w,w0) ∧
∧

l→r∈R
SAT(l >kbo r) ∧

∧
z∈X∪Y

(z ↔ ||z||l)

Theorem 12. A TRS R is terminating whenever the propositional formula
KBO-SAT(R) is satisfiable. 	


The reverse does not hold (Example 21).

3.2 Optimizations

This section deals with logical simplifications concerning propositional formulas
as well as optimizations which are specific for the generation of the constraint
formula which encodes KBO termination of the given instance.

Logical Optimizations. Since the constraint formula contains many occur-
rences of * and ⊥ logical equivalences simplifying such formulas are employed.

SAT solvers typically expect their input in conjunctive normal form (CNF)
but for the majority of the TRSs the constraint formula KBO-SAT(R) is too
large for the standard translation. The problem is that the resulting CNF may
be exponentially larger than the input formula because when distributing ∨ over
∧ subformulas get duplicated. In [20] Tseitin proposed a transformation which
is linear in the size of the input formula. The price for linearity is paid with
introducing new variables. As a consequence, Tseitin’s transformation does not
produce an equivalent formula, but it does preserve and reflect satisfiability.

Optimizations Concerning the Encoding. Before discussing the imple-
mented optimizations in detail it is worth mentioning the bottleneck of the whole
procedure. As addressed in the previous section, SAT solvers expect their input
in CNF. It turned out that the generation of all non-atomic subformulas, which
are needed for the translation, constitutes the main bottleneck. So every change
in the implementation which reduces the size of the constraint formula will result
in an additional speedup. All improvements discussed in the sequel could reduce
the execution time at least a bit. Whenever they are essential it is explicitly
stated.

Since >kbo is a simplification order it contains the embedding relation. We
make use of that fact by only computing the constraint formula s >kbo t if the
test s �emb t is false. Most of the other optimizations deal with representing or
computing the weight function. When computing the constraints for the weights
in a rule l → r, removing function symbols and variables that occur both in l and
in r is highly recommended or even necessary for an efficient implementation.
The benefit can be seen in the example below. Note that propositional addition
is somehow expensive as new variables have to be added for representing the
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carry and the sum in addition to a formula which encodes the constraints for
each digit.

Example 13. Consider the TRS consisting of the single rule f(y, g(x), x) →
f(y, x, g(g(x))). Without the optimization the constraints for the weights would
amount to

(f ,*) + (w0,*) + (g,*) + (w0,*) + (w0,*)
�

(f ,*) + (w0,*) + (w0,*) + (g,*) + (g,*) + (w0,*)

whereas employing the optimization produces the more or less trivial constraint
(0,*) � (g,*).

By using a cache for propositional addition we can test if we already computed
the sum of the weights of two function symbols f and g. That reduces the number
of newly introduced variables and sometimes we can omit the constraint formula
for addition. This is clarified in the following example.

Example 14. Consider the TRS consisting of the rules f(a) → b and f(a) → c.
The constraints for the first rule amount to the following formula where fa
corresponds to the new variables which are required for the sum when adding f
and a and the propositional formula ϕ represents the constraints which are put
on each digit of fa:

SAT(f(a) >kbo b) = Wf(a) > Wb ∨
(
Wf(a) = Wb ∧Xfb

)
= (f ,*) + (a,*) > (b,*) ∨

(
(f ,*) + (a,*) = (b,*) ∧Xfb

)
= ( fa, ϕ) > (b,*) ∨

(
( fa, ϕ) = (b,*) ∧Xfb

)
= ( fa > b ∧ ϕ) ∨ ( fa = b ∧ ϕ ∧Xfb)

We get a similar formula for the second rule and the conjunction of both amounts
to (

( fa > b ∧ ϕ) ∨ ( fa = b ∧ ϕ ∧Xfb)
)
∧

(
( fa > c ∧ ϕ) ∨ ( fa = c ∧ ϕ ∧Xfc)

)
Using commutativity and distributivity we could obtain the equivalent formula(

fa > b ∨ ( fa = b ∧Xfb)
)
∧

(
fa > c ∨ ( fa = c ∧Xfc)

)
∧ ϕ

which gives rise to fewer subformulas. Note that this simplification can easily be
implemented using the information of the cache for addition.

4 A Pseudo-boolean Encoding of KBO

A pseudo-boolean constraint (PBC) is of the form

( n∑
i=1

ai ∗ xi

)
◦m
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where a1, . . . , an,m are fixed integers, x1, . . . , xn boolean variables that range
over {0, 1}, and ◦ ∈ {�,=,}. We separate PBCs that are written on a single
line by semicolons. A sequence of PBCs is satisfiable if there exists an assignment
which satisfies every PBC in the sequence. Since 2005 pseudo-boolean evaluation
[17] is a track of the international SAT competition.3 In the sequel we show how
to encode KBO using PBCs.

Definition 15. For a weight function (w,w0) let ADM-PBC(w,w0) be the col-
lection of PBCs

– w0 � 1
– w(c)− w0 � 0 for all c ∈ F (0)

– (n− 1) ∗ w(f) +
∑
f �=g

(Xfg + Yfg) � (n− 1) for all f ∈ F (1)

where n = |F|, w(f) = 2k−1 ∗ fk + · · · + 20 ∗ f1 denotes the weight of f in N
using k bits, and w0 denotes the value of w0.

In the definition above the first two PBCs express that w0 is strictly larger than
zero and that every unary function symbol has weight at least w0. Whenever the
considered function symbol f has weight larger than zero the third constraint is
trivially satisfied. In the case that the unary function symbol f has weight zero
the constraints on the precedence add up to n− 1 if and only if f is a maximal
element. Note that Xfg and Yfg are mutual exclusive (which is ensured when
encoding the constraints on a quasi-precedence, cf. Definition 18).

For the encoding of s >kbo t and s >′
kbo t auxiliary propositional variables

KBOs,t and KBO ′
s,t are introduced. The intended meaning is that if s >kbo t

(s >′
kbo t) then KBOs,t (KBO ′

s,t) evaluates to true under a satisfying assignment.
The general idea of the encoding is very similar to the pure SAT case. As we do
not know anything about weights and the precedence at the time of encoding
we have to consider the cases w(s) > w(t) and w(s) = w(t) at the same time.
That is why KBO ′

s,t and the recursive call to PBC(s >′
kbo t) must be considered

in any case.
The weight w(t) of a term t is defined similarly as in Section 2 with the only

difference that the weight w(f) of the function symbol f ∈ F is represented in
k bits as described in Definition 15.

Definition 16. Let s and t be terms. The encoding of PBC(s >kbo t) amounts
to KBOs,t = 0 if s ∈ V or s = t or |s|x < |t|x for some x ∈ V. In all other cases
PBC(s >kbo t) is

−(m+ 1) ∗KBOs,t + w(s)− w(t) + KBO ′
s,t � −m; PBC(s >′

kbo t)

where m = 2k ∗ |t|. Here PBC(s >′
kbo t) is the empty constraint when t ∈ V,

s ∈ T (F (1), {t}), and s �= t. In the remaining case s = f(s1, . . . , sn), t =
g(t1, . . . , tm), and PBC(s >′

kbo t) is the combination of PBC(si >kbo ti) and
3 http://sat07.ecs.soton.ac.uk
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{
−KBO ′

s,t + KBOsi,ti � 0 if f = g

−2 ∗KBO ′
s,t + 2 ∗Xfg + Yfg + KBOsi,ti � 0 if f �= g

where i denotes the least 1  j  min{n,m} with si �= ti.

Since the encoding of PBC(s >kbo t) is explained in the example below here we
just explain the intended semantics of PBC(s >′

kbo t). In the first case where t
is a variable there are no constraints on the weights and the precedence which
means that the empty constraint is returned. In the case where s and t have
identical root symbols it is demanded that whenever KBO ′

s,t holds then also
KBOsi,ti must be satisfied before going into the recursion. In the last case s and
t have different root symbols and the PBC expresses that whenever KBO ′

s,t is
satisfied then either f > g or both f ∼ g and KBOsi,ti must hold.

To get familiar with the encoding and to see why the definitions are a bit
tricky consider the example below. For reasons of readability symbols occurring
both in s and in t are removed immediately. This entails that the multiplication
factor m should be lowered to

m =
∑

a∈F∪V
max{0, 2k ∗ (|t|a − |s|a)},

which again is a lower bound of the left-hand side of the constraint if KBOs,t is
false.

Example 17. Consider the TRS consisting of the rule

s = f(g(x), g(g(x))) → f(g(g(x)), x) = t

The PB encoding PBC(s >kbo t) then looks as follows:

−KBOs,t + w(g) + KBO ′
s,t � 0 (1)

−KBO ′
s,t + KBOg(x),g(g(x)) � 0 (2)

−(2k + 1) ∗KBOg(x),g(g(x)) − w(g) + KBO ′
g(x),g(g(x)) � −2k (3)

KBO ′
g(x),g(g(x)) + KBOx,g(x) � 0 (4)

KBOx,g(x) = 0 (5)

Constraint (1) states that if s >kbo t then either w(g) > 0 or s >′
kbo t. Clearly

the attentive reader would assign w(g) = 1 and termination of the TRS is
shown. The encoding however is not so smart and performs the full recursive
translation to PB. In (3) it is not possible to satisfy s1 = g(x) >kbo g(g(x)) = t1
since the former is embedded in the latter. Nevertheless the constraint (3) must
remain satisfiable because the TRS is KBO terminating. The trick is to introduce
a hidden case distinction. The multiplication factor in front of the KBOs1,t1

variable does that job. Whenever s1 >kbo t1 is needed then KBOs1,t1 must
evaluate to true. Then implicitly the constraint demands that w(s1) > w(t1) or
w(s1) = w(t1) and s1 >′

kbo t1 which reflects the definition of KBO. If s1 >kbo t1
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need not be satisfied (e.g., because already s >kbo t in (1)) then the constraint
holds in any case since the left hand side in (3) never becomes smaller than −2k.

4.1 Encoding the Precedence in PBCs

To encode a precedence in PB we again interpret function symbols in N. For
this approach an additional set of propositional variables Z = {Zfg | f, g ∈
F with f �= g} is used. The intended semantics is that Zfg evaluates to true
whenever g � f or f and g are incomparable. Just note that the Zfg variables
are not necessary as far as termination proving power is considered but they are
essential to encode partial precedences which are sometimes handy (as explained
in Section 6).

Definition 18. For a signature F we define PREC-PBC(F) using the PBCs
below. Let l = <log2(|F|)=. For all f, g ∈ F with f �= g

2 ∗Xfg + Yfg + Ygf + 2 ∗ Zfg = 2

−Xfg + 2l ∗ Yfg + 2l ∗ Zfg + i(f)− i(g) � 0

2l ∗Xfg + Yfg + 2l ∗ Zfg + i(f)− i(g) � 1

where i(f) = 2l−1 ∗ f ′l + · · ·+ 20 ∗ f ′1 denotes the interpretation of f in N using
l bits.

The above definition expresses all requirements of a quasi-precedence. The sym-
metry of ∼ and the mutual exclusion of the X , Y , and Z variables is mimicked
by the first constraint. The second constraint encodes the conditions that are
put on the X variables. Whenever a system needs f > g in the precedence to
be terminating then Xfg must evaluate to true and (because they are mutually
exclusive) Yfg and Zfg to false. Hence in order to remain satisfiable i(f) > i(g)
must hold. In a case where f > g is not needed (but the TRS is KBO termi-
nating) the constraint must remain satisfiable. Thus Yfg or Zfg evaluate to one
and because i(g) is bound by 2l − 1 the constraint does no harm. Summing up,
the second constraint encodes a proper order on the symbols in F . The third
constraint forms an equivalence relation on F using the Yfg variables. Whenever
f ∼ g is demanded somehow in the encoding, then Xfg and Zfg evaluate to false
by the first constraint. Satisfiability of the third constraint implies i(f) � i(g)
but at the same time symmetry demands that Ygf also evaluates to true which
leads to i(g) � i(f) and thus to i(f) = i(g).

Definition 19. Let R be a TRS. The pseudo-boolean encoding KBO-PBC(R) is
defined as the combination of ADM-PBC(w,w0), PREC-PBC(F), and

PBC(l >kbo r); KBO l,r = 1

for all l → r ∈ R.

Theorem 20. A TRS R is terminating whenever the PBCs KBO-PBC(R) are
satisfiable. 	

Again the reverse does not hold (Example 21).
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5 Experimental Results

We implemented our encodings on top of TTT [12]. MiniSat and MiniSat+ [7,8]
were used to check satisfiability of the SAT and PBC based encodings. Below we
compare our implementations of KBO, sat and pbc, with the ones of TTT and
AProVE [11]. TTT admits only strict precedences, AProVE also quasi-precedences.
Both implement the polynomial time algorithm of Korovin and Voronkov [15]
together with techniques of Dick et al. [5].

We used the 865 TRSs which do not specify any strategy or theory and the
322 string rewrite systems (SRSs) in version 3.2 of the Termination Problem
Data Base [18]. All tests were performed on a server equipped with an Intel R©
XeonTM processor running at a CPU rate of 2.40 GHz and 512 MB of system
memory with a timeout of 60 seconds.

5.1 Results for TRSs

As addressed in Section 3 one has to fix the number k of bits which is used to
represent natural numbers in binary representation. The actual choice is specified
as argument to sat (pbc). Note that a rather small k is sufficient to handle all
systems from [18] which makes Theorems 12 and 20 powerful in practice. The
example below gives evidence that there does not exist a general upper bound
on k.

Example 21. Consider the parametrized TRS consisting of the three rules

f(g(x, y)) → g(f(x), f(y)) h(x) → f(f(x)) i(x) → hn(x)

with n = 2k. Since the first rule duplicates the function symbol f we must assign
weight zero to it. The admissibility condition for the weight function demands
that f is a maximal element in the precedence. The second rule excludes the case
h ∼ f and demands that the weight of h is strictly larger than zero. It follows
that the minimum weight of hn(x) is n+ 1 = 2k + 1, which at the same time is
the minimum weight of i(x). Thus w(i) is at least 2k which requires k + 1 bits.

The left part of Table 1 summarizes4 the results for strict precedences. Since
AProVE produced seriously slower results than TTT in the TRS category, it is not
considered in Table 1. Interestingly, with k = 4 equally many TRSs can be proved
terminating as with k = 10. The TRS higher-order AProVE HO ReverseLastInit
needs weight eight for the constant init and therefore can only be proved KBO
terminating with k � 4.

Concerning the optimizations in Section 3.2, if we use the standard (expo-
nential) transformation to CNF, the total time required increases to 2681.06
seconds, the number of successful termination proofs decreases to 69, and 45
timeouts occur (for k = 4). Furthermore, if we don’t use a cache for adding

4 The experiments are described in more detail at
http://cl-informatik.uibk.ac.at/~hzankl/kbo.
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Table 1. KBO for 865 TRSs

strict precedence quasi-precedence
method(#bits) total time #successes #timeouts total time #successes #timeouts

sat/pbc(2) 19.2/16.4 72/76 0/0 20.9/16.8 73/77 0/0
sat/pbc(3) 20.2/16.3 77/77 0/0 21.9/16.9 78/78 0/0
sat/pbc(4) 21.9/16.1 78/78 0/0 22.8/17.0 79/79 0/0
sat/pbc(10) 86.1/16.7 78/78 1/0 90.2/17.2 79/79 1/0
TTT 169.5 77 1

weights and equal symbols are not removed when the weights of left and right-
hand sides of rules are compared, the number of successful termination proofs
remains the same but the total time increases to 92.30 seconds and one timeout
occurs.

TTT without timeout requires 4747.65 seconds and can prove KBO termination
of 78 TRSs. The lion’s share is taken up by various 21 with 4016.23 seconds for
a positive result. sat(4) needs only 0.10 seconds for this TRS and pbc(4) even
only 0.03 seconds. Since TTT employs the slightly stronger KBO definition of
[15] it can prove one TRS (various 27) terminating which cannot be handled
by sat and pbc. On the other hand TTT gives up on HM t000 which specifies
addition for natural numbers in decimal notation (using 104 rewrite rules). The
problem is not the timeout but at some point the algorithm detects that it will
require too many resources. To prevent a likely stack overflow from occurring,
the computation is terminated and a “don’t know” result is reported. (AProVE
behaves in a similar fashion on this TRS.) Also for our approaches this system
is the most challenging one with 0.54 (sat(4)) and 0.11 (pbc(4)) seconds.

As can be seen from the right part of Table 1, by admitting quasi-precedences
one additional TRS (SK 90.2.42, Example 3) can be proved KBO terminating.
Surprisingly, AProVE 1.2 cannot prove (quasi) KBO termination of this system,
for unknown reasons.

5.2 Results for SRSs

For SRSs we have similar results, as can be inferred from Table 2. The main
difference is the larger number of bits needed for the propositional addition of
the weights. The maximum number of SRSs is proved KBO terminating with
k � 7 in case of sat and k � 6 for pbc. The reason is that in the first implemen-
tation the number of bits does not increase for intermediate sums when adding
the weights. Generally speaking TTT performs better on SRSs than on TRSs
concerning KBO because it can handle all systems within 546.43 seconds. The
instance which consumes the most time is Zantema z112 with 449.01 seconds for
a positive answer; sat(7) needs just 0.11 and pbc(7) 0.03 seconds. With a timeout
of 60 seconds TTT proves KBO termination of 29 SRSs, without any timeout one
more. Our implementations both prove KBO termination of 33 SRSs. The three
SRSs that make up the difference (Trafo dup11, Zantema z069, Zantema z070)
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Table 2. KBO for 322 SRSs

strict precedence quasi-precedence
method(#bits) total time #successes #timeouts total time #successes #timeouts

sat/pbc(2) 9.1/5.9 8/19 0/0 13.9/6.2 8/19 0/0
sat/pbc(3) 12.1/5.9 17/24 0/0 16.9/6.4 17/24 0/0
sat/pbc(4) 15.1/6.0 24/30 0/0 20.0/6.5 24/30 0/0
sat/pbc(6) 15.8/6.1 31/33 0/0 27.4/6.7 31/33 0/0
sat/pbc(7) 17.0/6.1 33/33 0/0 31.2/6.7 33/33 0/0
sat/pbc(10) 21.6/6.3 33/33 0/0 98.8/6.9 32/33 1/0
TTT 72.4 29 1

derive from algebra (polyhedral groups). TTT and AProVE give up on these SRSs
for the same reasons as mentioned in the preceding subsection for HM t000.

Admitting quasi-precedences does not allow to prove KBO termination of
more SRSs. On the contrary, a timeout occurs when using sat(10) on Trafo dup11
whereas pbc(10) easily handles the system.

6 Assessment

In this section we compare the two approaches presented in this paper. Let us
start with the most important measurements: power and run time. Here pbc
is the clear winner. Not only is it faster on any kind of precedence; it also
scales much better for larger numbers of bits used to represent the weights.
Furthermore, the pseudo-boolean approach is less implementation work since
additions are performed by the SAT solver and also the transformation to CNF
is not necessary. We note that the implementation of pbc is exactly as described
in the paper whereas sat integrates the optimizations described in Section 3.2.

A further advantage of the pseudo-boolean approach is the option of a goal
function which should be minimized while preserving satisfiability of the con-
straints. Although the usage of such a goal function is not of computational in-
terest it is useful for generating easily human readable proofs. We experimented
with functions minimizing the weights for function symbols and reducing the
comparisons in the precedence. The former has the advantage that one obtains
a KBO proof with minimal weights which is nicely illustrated on the SRS Zan-
tema z113 consisting of the rules

11→ 43 33 → 56 55→ 62

12→ 21 22 → 111 34→ 11

44→ 3 56 → 12 66→ 21

TTT and AProVE produce the proof

w(1) = 32471712256 w(2) = 48725750528 w(3) = 43247130624
w(4) = 21696293888 w(5) = 44731872512 w(6) = 40598731520

3 > 1 > 2 1 > 4
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whereas pbc(6) produces

w(1) = 31 w(2) = 47 w(3) = 41
w(4) = 21 w(5) = 43 w(6) = 39
3 > 1 > 2 3 > 5 > 6 > 2 1 > 4

Regarding the goal function dealing with the minimization of comparisons in
the precedence we detected that using two (three, four five, ten) bits to encode
weights of function symbols 39 (45, 46, 47, 47) TRSs can be proved terminating
in 16.7 (16.8, 17.0, 16.7, 16.9) seconds with empty precedence.

While running the experiments, sat and pbc produced different answers for the
SRS Zantema z13; pbc claimed KBO termination whereas sat answered “don’t
know”. Chasing that discrepancy revealed a bug [6] in MiniSat+ (which has been
corrected in the meantime).

An interesting (and probably computationally fast) extension will be the in-
tegration of the pseudo-boolean encoding of KBO into a dependency pair [1]
setting [4,22]. Clearly the constraints will get more involved but we expect that
the generalization to non-linear constraints in the input format for the PB track
of the SAT 2007 competition will ease the work considerably.

7 Summary

In this paper we presented two logic-based encodings of KBO—pure SAT and
PBC—which can be implemented more efficiently and with considerably less ef-
fort than the methods described in [5,15]. Especially the PBC encoding gives rise
to a very fast implementation even without caring about possible optimizations
in the encoding.
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Abstract. We present a new method for automatically proving termi-
nation of term rewriting and string rewriting. It is based on the well-
known idea of interpretation of terms in natural numbers where every
rewrite step causes a decrease. In the dependency pair setting only weak
monotonicity is required for these interpretations. For these we use quasi-
periodic functions. It turns out that then the decreasingness for rules only
needs to be checked for finitely many values, which is easy to implement.

Using this technique we automatically prove termination of over ten
string rewriting systems in TPDB for which termination was open until
now.

1 Introduction

At the Workshop on Termination, Seattle, August 2006, termination of the string
rewriting system (SRS) consisting of the two rules

aaa→ bab, bbb→ aaa,

was presented as an open problem. Shortly after that Aleksey Nogin and Carl
Witty came up with an ad hoc proof, based on observations on the length modulo
3 of maximal numbers of consecutive a’s in the string. Inspired by this proof
based on this modulo 3 behavior, we found alternative termination proofs for
the same SRS using dependency pairs and weakly monotone interpretations of
the shape

f(x) = 3 ∗ (x div 3) = x− (x mod 3).

In this way one challenge for the current paper was born: generalize this kind
of functions in such a way that they are suitable for implementation, and that
using these functions increases the power of termination provers.

During the last years proving termination of small SRSs received a lot of
attention, see e.g. [14,5,13,10,6,8]. Among the reasons for this we mention:

– It is an open problem whether termination of one rule string rewriting is
decidable or not. Motivated by this open problem people are triggered to
investigate termination behavior of single rules.

F. Baader (Ed.): RTA 2007, LNCS 4533, pp. 404–418, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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– There are several extremely small SRSs like {aabb → bbbaaa} and {aa →
bc, bb → ac, cc → ab} for which proving termination turned out to be
surprisingly hard. For these two examples termination proofs are known and
can be found by tools, but for several others the termination problem is still
open.

Every year there is a Termination Competition [9], where several tools are
applied on the newest version of the Termination Problem Data Base (TPDB)
[2]. In the string rewriting category of the 2006 version of TPDB there are 34
systems for which in the 2006 termination competition none of the tools could
prove termination or non-termination, some of which are known to be non-
terminating. By our implementation of the technique presented in this paper for
13 among these 34 systems termination proofs are generated fully automatically.

Our approach is an instance of the well-known theme of interpretations into
a well-founded monotone algebra. It is well-known that in the setting of depen-
dency pairs one only needs weak monotonicity in the algebra. In this paper we
focus on the case where the monotone algebra simply consists of the natural
numbers with the usual order. So the key point is to choose suitable weakly
monotonic functions. In the usual approach these functions are always polyno-
mials. Instead we choose functions that have a periodic difference with linear
functions, more precisely, functions f satisfying

f(x+ p) = f(x) + s ∗ p

for all x ∈ N, for some period p ∈ N, p > 1 and some slope s ∈ N. Such
functions are called quasi-periodic. Note that the function f mentioned above
given by f(x) = 3 ∗ (x div 3) is an instance of a quasi-periodic function with
period 3 and slope 1. Moreover, all linear polynomial interpretations are quasi-
periodic.

The following observations make quasi-periodic functions suitable for use in
automatic search for termination proofs:

– A quasi-periodic function is fully determined by its slope, its period, and
finitely many values.

– Quasi-periodic functions are closed under composition, by which the inter-
pretation of a term is quasi-periodic if the interpretations of its operations
symbols are.

– Checking whether ∀x : f(x) ≥ g(x) for quasi-periodic functions f, g can be
done by inspecting only finitely many values of x.

As a consequence, by fixing the period and bounding the slope the corre-
sponding search space for function interpretations is finite. However, it may be
huge. We have implemented the method by fixing the period and bounding the
slope, transforming the search problem to a SAT problem, and using the state-
of-the-art SAT solver minisat, version 2, [3]. Surprisingly, all newly solved SRSs
from TPDB could be solved by fixing the slope to be 1. Therefore in the presen-
tation we focus on this case, but we also implemented the approach for arbitrary
bounded slopes.
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This paper has been organized as follows. In Section 2 we recall the earlier the-
ory on monotone algebras and dependency pairs as we need it, and we introduce
quasi-periodic functions and investigate their basic properties. In Section 3 we
work out these basic ingredients towards a proof scheme for string rewriting. In
Section 4 we describe how this has been implemented by transforming the corre-
sponding search problem to a SAT problem, and investigate some experimental
results. In Section 5 we describe multi-dimensional quasi-periodic functions, and
investigate how to use them for extending the approach to term rewriting. In
Section 6 we describe a direct approach of using quasi-periodic functions with-
out the use of the dependency pair transformation. Finally, in Section 7 we give
some conclusions.

2 Basic Theory

For a term rewriting system (TRS) R we write →R for its rewrite relation and
top→R for its top rewrite relation, i.e., t

top→R u if and only if there is a rewrite rule
8→ r ∈ R and a substitution σ such that t = 8σ and u = rσ.

A relation → is called well-founded, terminating or strongly normalizing, no-
tation SN(→), if no infinite sequence t1, t2, t3, . . . exists such that ti → ti+1 for
all i = 1, 2, 3, . . . . A TRS R is called terminating if SN(→R), shortly written as
SN(R).

A binary relation →1 is called terminating relative to a binary relation →2,
written as SN(→1 /→2), if no infinite sequence t1, t2, t3, . . . exists such that

– ti →1 ti+1 for infinitely many values of i, and
– ti →2 ti+1 for all other values of i.

We use the notation →1 / →2 to denote →∗
2 · →1 · →∗

2; it is easy to see that
SN(→1 / →2) coincides with well-foundedness of →1 / →2. We write SN(R/S)
as a shorthand for SN(→R /→S), and we write SN(Rtop/S) as a shorthand for

SN(
top→R /→S).

For a TRS R over a signature Σ a symbol f ∈ Σ is called a defined symbol
if f is the root symbol of a left-hand side of a rule of R. For every defined
symbol f ∈ Σ a new marked symbol f# is added having the same arity as f . If
f(s1, . . . , sn) → C[g(t1, . . . , tm)] is a rule in R and g is a defined symbol of R,
then the rewrite rule f#(s1, . . . , sn)→ g#(t1, . . . , tm) is called a dependency pair
of R. The TRS consisting of all dependency pairs of R is denoted by DP(R).

The main theorem about dependency pairs is the following, due to Arts and
Giesl, [1].

Theorem 1. Let R be a TRS. Then SN(R) if and only if SN(DP(R)top/R).

In order to prove termination of a TRS R we will prove SN(DP(R)top/R). In
order to do so we describe a technique for proving SN(Rtop/S) for arbitrary
TRSs R,S, based on weakly monotone algebras.
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Definition 1. A Σ-algebra (A, [·]) is defined to consist of a non-empty set A,
and for every f ∈ Σ a function [f ] : An → A, where n is the arity of f . This
function [f ] is called the interpretation of f .

A operation [f ] : An → A is monotone with respect to a binary relation → on
A if for all ai, bi ∈ A for i = 1, . . . , n with ai → bi for some i and aj = bj for
all j �= i we have

[f ](a1, . . . , an) → [f ](b1, . . . , bn).

A weakly monotone Σ-algebra (A, [·], >,�) is a Σ-algebra (A, [·]) equipped
with two relations >, � on A such that

– > is well-founded;
– > · � ⊆ >;
– for every f ∈ Σ the operation [f ] is monotone with respect to �.

The combination >,� is closely related to the notion of reduction pair as pre-
sented e.g. in [7]. A crucial difference is that the relations in a reduction pair are
relations on terms that are closed under substitutions, while in our setting they
are relations on the set A.

Writing X for the set of variables, for a Σ-algebra (A, [·]) and a map α : X → A
the term evaluation [·, α] : T (Σ,X ) → A is defined inductively by

[x, α] = α(x), [f(t1, . . . , tn), α] = [f ]([t1, α], . . . , [tn, α])

for f ∈ Σ and x ∈ X .
As the main property of weakly monotone algebras we recall the following

theorem from [4].

Theorem 2. Let R,S be TRSs over a signature Σ. Let (A, [·], >,�) be a weakly
monotone Σ-algebra such that [8, α] � [r, α] for every rule 8 → r in R ∪ S and
every α : X → A. Let R′ consist of all rules 8→ r from R satisfying [8, α] > [r, α]
for every α : X → A.

Then SN((R \R′)top/S) if and only if SN(Rtop/S).

The approach for proving SN(R) now is trying to prove SN(DP(R)top/R) by
finding a suitable weakly monotone algebra such that according to Theorem 2
rules from DP(R) may be removed. This is repeated until all rules of DP(R) have
been removed.

We will focus on A = N, where > is the usual ordering on N and � coin-
cides with ≥. Now indeed > is well-founded and > · � ⊆ > holds, so the only
requirement for being a weakly monotone algebra is that for every f ∈ Σ the
operation [f ] is monotone with respect to ≥. Monotonicity with respect to ≥ is
called weak monotonicity.

Definition 2. A function f : N → N is called quasi-periodic with period p ∈
N, p > 0, and slope s ∈ N if f(x+ p) = f(x) + s ∗ p for all x ∈ N.

For [f ] we will use quasi-periodic functions in case f is unary; for f of higher
arity we will extend this notion in Section 5.
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Theorem 3. Let f : N → N be a quasi-periodic function with period p ∈ N,
p > 0, and slope s ∈ N. Then

1. f(x+ n ∗ p) = f(x) + n ∗ s ∗ p for all x, n ∈ N.
2. f is weakly monotone if and only if f(x+ 1) ≥ f(x) for x = 0, . . . , p− 1.
3. Let g : N → N be a quasi-periodic function with period p and slope t. Then
f ◦ g is quasi-periodic with period p and slope s ∗ t.

4. Let g : N → N be a quasi-periodic function with period p and slope t.
Then f(x) ≥ g(x) for all x ∈ N if and only if s ≥ t and f(x) ≥ g(x) for
x = 0, . . . , p− 1.

Proof. 1. Induction on n.
2. By definition f is weakly monotone if and only if f(x + i) ≥ f(x) for all
x, i ∈ N; by induction on i this is equivalent to f(x + 1) ≥ f(x) for all x.
For every x ∈ N we can write x = x′ + n ∗ p for some n ∈ N with x′ < p.
Using part (1) then yields f(x + 1) − f(x) = f(x′ + 1) − f(x′) from which
the claim follows.

3. Using t ∈ N and part (1) we obtain

(f ◦ g)(x+ p) = f(g(x+ p))
= f(g(x) + t ∗ p)
= f(g(x)) + s ∗ t ∗ p
= (f ◦ g)(x)) + s ∗ t ∗ p

.

4. For the ‘if’-part we write x = x′ + n ∗ p with x′ < p and use part (1):

f(x)− g(x) = f(x′) + n ∗ s ∗ p− (g(x′) + n ∗ t ∗ p)
= f(x′)− g(x′) + n ∗ (s− t) ∗ p
≥ 0

.

For the ‘only if’-part we assume f(x) ≥ g(x) for all x ∈ N and need to
show that s ≥ t. Assume not, then t ≥ s + 1 and f(n ∗ p) − g(n ∗ p) =
f(0) − g(0) + n ∗ (s − t) ∗ p ≤ f(0) − g(0) − n ∗ p < 0 for n large enough,
contradiction.

	


A quasi-periodic function with period p is also quasi-periodic with period n ∗ p
for n ∈ N, n > 0. Using part (3) of Theorem 3 one sees that composition of
quasi-periodic functions with distinct periods is again quasi-periodic, with the
period being the least common multiple of both periods. However, we will not
use this: in every setting we fix all periods to be the same.

One may also allow non-integer slopes. For instance, f defined by f(x) =
2 ∗ (x div 3) can be seen as quasi-periodic with period 3 and slope 2

3 . However,
quasi-periodic functions with a fixed period and non-integer slope are not closed
under composition. For instance, for this function f the function f ◦ f does not
have period 3 any more. It has period 9 and slope 4

9 . Since for our purpose closed-
ness under composition is essential we restrict to integer non-negative slopes. We
allow the slope to be 0; this corresponds to periodic functions. A quasi-periodic
function with slope 0 is weakly monotone if and only if it is constant.
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3 String Rewriting

String rewriting can be seen as the special case of term rewriting in which all
symbols are unary. In this case we need only one variable x, and we identify
the string a1 · · · an with the term a1(· · · (an(x)) · · · ). We write αi for the map
mapping this variable x to the number i, for the rest we may forget about this
variable.

We propose the following approach for proving termination of an SRS S.
Compute DP(S) and try to prove SN(DP(S)top/S); if we succeed then indeed

by Theorem 1 we may conclude SN(S). Trying to prove SN(Rtop/S) for an SRS
R is done as follows. First try to remove rules from R by Theorem 2 using
simple polynomials (or any other fast technique). Next apply the following proof
scheme:

Proof scheme.

– Fix a period p ≥ 1.
– For every symbol a choose a slope slope(a) and p natural numbers [a](x) for
x = 0, . . . , p−1, fully defining [a] : N→ N by [a](x+p) = [a](x)+p∗slope(a),
meeting the following requirements:
• [a](x+ 1) ≥ [a](x) for every symbol a and every x = 0, . . . , p− 1 (where

[a](p) = [a](0) + p ∗ slope(a)),
• [8, αi] ≥ [r, αi] for all rules 8→ r in R ∪ S and all i = 0, . . . , p− 1,
• for at least one rule 8 → r in R it holds that [8, αi] > [r, αi] for all
i = 0, . . . , p− 1; write R′ for the rules from R for which this holds.

– If R′ = R we are done, otherwise SN((R \R′)top/S) has to be proved, either
by repeating this proof scheme or by any other technique.

Correctness of this approach follows by combining Theorem 2 and Theorem 3.
For p = 1 the scheme coincides with linear polynomials.

Example 1. We consider the example mentioned in the introduction: the two
rules aaa → bab, bbb → aaa. Applying Theorem 1 we will prove termination
of this SRS S by proving SN(DP(S)top/S). By considering lengths of strings,
more precisely, by applying Theorem 2 where the algebra consists of the natural
numbers and every symbol is interpreted by the successor function, it remains
to prove SN(Rtop/S) for R consisting of the two rules Aaa→ Bab, Bbb→ Aaa,
where we simply write A, B instead of the marked symbols a# and b#. For this
we apply the above approach: we fix p = 3, all slopes are one, and choose

[a](0) = 2, [b](0) = 3, [A](0) = 2, [B](0) = 3,
[a](1) = 3, [b](1) = 3, [A](1) = 4, [B](1) = 4,
[a](2) = 4, [b](2) = 3, [A](2) = 5, [B](2) = 4.

All properties are checked for R′ consisting of the rule Bbb→ Aaa. So this rule
may be removed from R. The remaining property SN({Aaa → Bab}top/S) is
easily proved by counting the number of A symbols.
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We conclude this section by some basic transformations on SRSs preserving
termination.

For a string s write srev for its reverse. For an SRS R write

Rrev = { 8rev → rrev | 8→ r ∈ R }.

and

R−1 = {r→ 8 | 8→ r ∈ R}.

From [13] we recall the following simple lemma.

Lemma 1. Let R be an SRS.

1. SN(R) if and only if SN(Rrev).
2. Assume that R is finite and that for every rule 8 → r of R the lengths of 8

and r are equal. Then SN(R) if and only if SN(R−1).

Slightly more involved, and increasing the SRS size, is the following transforma-
tion. For a set Σ of symbols we define lab : Σ∗ ×Σ → (Σ ×Σ)∗ as follows:

lab(ε, a) = ε, lab(sa, b) = lab(s, a)(a, b),

for all a, b ∈ Σ, s ∈ Σ∗. Here ε denotes the empty string. For an SRS R over Σ
we define

lab(R) = {lab(8, a)→ lab(r, a) | 8→ r ∈ R ∧ a ∈ Σ }.

For a non-empty string s write s1 for its first element. In order to force that for
every rule 8→ r we have 81 = r1, for arbitrary SRS R over Σ we define the SRS
F (R) to be

{8→ r ∈ R | r �= ε∧81 = r1} ∪ {a8→ ar | a ∈ Σ∧8→ r ∈ R∧(r = ε∨81 �= r1)}.

Lemma 2. Let R be an SRS. Then SN(R) if and only if SN(lab(F (R))).

Proof. Equivalence of SN(R) and SN(F (R)) is straightforward. Equivalence of
SN(F (R)) and SN(lab(F (R))) is a direct application of semantic labelling [11]
in which the model is Σ and every symbol is interpreted by its own value. For
the model requirement it is essential that for every rule 8→ r in F (R) we have
81 = r1. 	


The idea of these transformations is that if proving termination of the original
system fails, then proving termination of the transformed system is tried. This
idea is not new. For rev it is extensively used in several tools; for lab(F (·)) it was
extensively and very successfully used in the 2006 competition by Jambox, see
[9]. In Example 3 we will see how Lemma 2 can be applied fruitfully.
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4 Implementation and Results

We experimented with various ways for automatically finding termination proofs
based on the above given proof scheme. The first one simply chose several times
randomly among a class of quasi-periodic functions until all requirements were
fulfilled. The class of quasi-periodic functions consisted of functions of the shape
λx · x + n and λx · p ∗ (x div p) + n for constants n. In this way the first
automatically found termination proof for the example in the introduction was
given, only a few days after Nogin and Witty found their manual proof.

However, this random search has a few drawbacks:

– It depends on the special choice of the shape of the quasi-periodic functions
chosen, being much more restricted than arbitrary quasi-periodic functions
with fixed period and slope.

– If no proof is found you do not know whether no proof of the desired shape
exists or you did not yet try long enough.

A remedy against both these drawbacks is the following. For all numbers
chosen in the proof scheme choose numbers in binary notation, and introduce
boolean variables for each of the bits. Express all requirements in the proof
scheme as propositional requirements on these boolean variables. Then a choice
of the numbers satisfying all requirements is possible if and only if the formula
is satisfiable. So the approach is to apply a state-of-the-art SAT solver to the
resulting formula (just like for several other methods for proving termination),
and in case the formula is satisfiable transform the bits of the numbers in the
corresponding satisfying assignment back to the numbers they represent.

Still the encoding of the requirements can be done in several ways. One fruit-
ful way is the following. It easily extends to arbitrary slopes; for keeping the
presentation simple we restrict here to the case where all slopes are one. Assume
we want to prove SN(Rtop/S).

We fix three numbers: p is the period, n is the number of bits per number,
by which all numbers are non-negative and < 2n, and m is the maximal number
allowed as an intermediate result, satisfying p < m < 2n − p. For all symbols a
we choose m∗n boolean variables for the m n-bit numbers [a](0), . . . , [a](m−1).
For these we generate the requirements [a](i) ≤ [a](i + 1) for i = 0, . . . , p − 1
and [a](i + p) = [a](i) + p for i = 0, . . . ,m − p − 1. Having all these numbers
[a](0), . . . , [a](m−1) available in separate n-bit notation makes it straightforward
to express the boolean formula [a](i) = j for given numbers i, j, i < m.

In order to check [8, αi] ≥ [r, αi], for every rule 8 → r in R ∪ S and every
i = 0, . . . , p− 1 the following is done. Write 8 = a1a2 · · · ak, then k fresh binary
numbers 8i,1, . . . , 8i,k are introduced, for which the following requirements are
created:

8i,k = [ak](i),

(j = 8i,q)→ (8i,q−1 = [aq](j)), for all q = 1, . . . , k, j = 0, . . . ,m− 1,

m > 8i,q, for all q = 2, . . . , k.
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This is done similarly for r. Next the requirement 8i,1 ≥ ri,1 is generated. Finally
the requirement is added that for at least one rule in R we have 8i,1 > ri,1.

A remarkable property of this approach is that the only arithmetic that occurs
in these formulas is the unary function λx · x + p and checking for > and ≥.
As a consequence, the resulting formulas are relatively small. For instance, our
solution given in Example 1 was found by applying SAT on a formula consisting
of 6065 clauses on 872 variables, in a fraction of a second, after choosing the
parameters p = 3, n = 4, m = 7.

In order to find termination proofs fully automatically, the approach should not
depend on parameters that have to be set manually. Therefore we need heuristics
for setting these parameters and for how to combine this with other techniques.

We chose always to combine this with basic polynomials, more precisely, apply
Theorem 2 with natural numbers and linear polynomials with coefficients in n
bits, and try both these basic polynomials and the quasi-periodic interpretations
with the fixed parameters as long as possible. Moreover, we apply Lemma 1: after
an attempt fails for an SRS S, then a next attempt is done for Srev. If even that
fails, then for length-preserving systems the same is done for S−1.

Of course our approach is easily combined with other termination techniques,
but in order to investigate the merits of the technique itself we concentrated on
running the experiments in this most basic setting.

After fixing this basic setting, a choice should be made for the parameters
p, n,m. We experimented with these parameters on several small SRSs for which
termination was unknown until now.

It appears that increasing these parameters never decreases the power. For
the parameters n,m this is obvious; for the period p this is only indicated by
experiments: we failed to prove this. For one system, Gebhardt18 in TPDB,
consisting of the two rules 0000 → 1011, 1001 → 0000, it turned out that no
proof was found with period less than 5, but a proof was found for period 5. We
did not find examples that could be solved with period higher than 5 but not by
period 5. So a suitable choice for the period is 5.

It turned out that all proofs we found could be found using numbers of four
bits. A corresponding choice of the parameters is n = 4 and m = 10. Fixing
these parameters p = 5, n = 4 and m = 10 we found termination proofs of the
following 11 SRSs in TPDB 2006, of which in the 2006 competition none of the
participating tools found a termination proof:

in the directory Endrullis: systems 01, 02, 05 and 06,
in the directory Gebhardt: systems 01, 04, 07, 11, 17 and 18,
in the directory Waldmann: system jw1 (this is the system from
Example 1).

All of these systems are very small: each one consists of only two rules over two
symbols. In all of these cases finding the satisfying assignment of the SAT for-
mula representing the quasi-periodic interpretation was done by minisat within
a fraction of a second.

Example 2. As an example we give the proof of the system Gebhardt18 as shown
above, found in this way by our implementation with the parameters p = 5, n = 4
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and m = 10. After removing the length-decreasing dependency pairs it remains
to prove SN(Rtop/S) for R consisting of the rules 0#000 → 1#011, 1#001 →
0#000 and S consisting of the original rules 0000 → 1011, 1001 → 0000. For
that the following quasi-periodic interpretation with period 5 is found:

[0](0) = 1, [0](1) = 2, [0](2) = 3, [0](3) = 4, [0](4) = 5,
[1](0) = 1, [1](1) = 1, [1](2) = 1, [1](3) = 6, [1](4) = 6,

[0#](0) = 2, [0#](1) = 7, [0#](2) = 7, [0#](3) = 7, [0#](4) = 7,
[1#](0) = 4, [1#](1) = 4, [1#](2) = 4, [1#](3) = 8, [1#](4) = 8.

As a consequence the rule 1#001→ 0#000 may be removed from R, after which
the rest is trivial by counting the number of 0# symbols.

This implementation restricts to the case where all slopes are equal to one.
The implementation easily extends to setting with arbitrary slopes. We also
experimented with other encodings of the problem, including general slopes.
Surprisingly, using general slopes we only found termination proofs for systems
for which also proofs with slope one were found. Hence generalizing the slope
does not seem to increase the power of the method, and therefore we do not
describe the implementation for general slopes in more detail.

Example 3. As an example of a combination with other techniques we consider
the special case of semantic labelling ([11]) as described in Lemma 2. Applying
lab(F (·)) to the SRS Gebhardt09, consisting of the two rules 0000 → 0111,
1001 → 0000, yields the transformed system of six rules over the four symbols
00, 01, 10 and 11:

00 00 00 00→ 01 11 11 10, 00 00 00 01→ 01 11 11 11,
01 10 00 01 10→ 00 00 00 00 00, 01 10 00 01 11→ 00 00 00 00 01,
11 10 00 01 10→ 10 00 00 00 00, 11 10 00 01 11→ 10 00 00 00 01.

It turns out that by the technique described in this paper termination of this
transformed SRS (and hence of the original SRS by Lemma 2) is easily proved,
again automatically generating a termination proof of an SRS for which termi-
nation was open until now.

A similar termination proof was found for the SRS Waldmann-sym-5, consisting
of the two rules aaa → bbb, bbbb → abba. For this SRS termination was open
until now too, by which the total score of new automatic proofs for unsolved
SRSs from TPDB becomes 13.

5 Term Rewriting

In order to apply our method to term rewriting, we call a function f : Nk → N
quasi-periodic with period p ∈ N, p > 0 and slope s = (s1, . . . , sk) ∈ Nk if for
each x ∈ Nk and each 1 ≤ i ≤ k

f(x1, . . . , xi + p, . . . , xk) = f(x1, . . . , xi, . . . , xk) + si ∗ p.

That is, f is quasi-periodic with slope si in its i-th argument.
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The analogue of Theorem 3 still holds, with similar proof:

Theorem 4. Let f : Nk → N be a quasi-periodic function with period p ∈
N, p > 0 and slope s = (s1, . . . , sk) ∈ Nk. Then

1. f is weakly monotonic if for all (x1, . . . , xk) ∈ {0, 1, . . . , p− 1}k and for all
1 ≤ i ≤ k we have f(x1, . . . , xi + 1, . . . , xk) ≥ f(x1, . . . , xi, . . . , xk).

2. Let g1, . . . , gk : Nl → N be quasi-periodic functions with period p and slopes
t1, . . . , tk, respectively. Then the combined function h : Nl → N defined by
h(x) = f(g1(x), . . . , gk(x)) is quasi-periodic with period p and its slope in the
i-th position is s1t1,i + . . .+ sktk,i.

3. Let g : Nk → N be a quasi-periodic function with period p and slope t =
(t1, . . . , tk). Then f(x) ≥ g(x) for all x ∈ Nk if and only if s1 ≥ t1, . . . , sk ≥
tk and f(x) ≥ g(x) for all x ∈ {0, 1, . . . , p− 1}k.

Corollary 1. If an interpretation [·] is given that assigns to each k-ary function
symbol f from the signature Σ a k-ary quasi-periodic function [f ] with period
p, then the interpretation [t] of any term t containing n variables is an n-ary
quasi-periodic function with period p.

Proof. If t is a variable vi, then [t] is the projection (v1, . . . , vn) �→ vi which
is quasi-periodic with slope (0, . . . , 0, 1, 0 . . .0) and any period p > 0. If t =
f(t1, . . . , tk), then the interpretation can be composed (by Theorem 4) from the
interpretations [t1], . . . , [tk]. This includes the case k = 0. 	


To find a quasi-periodic interpretation that proves (relative) termination of a
given term rewriting system, we extend the SAT solver approach mentioned in
Section 4. In the following, the word variable means ”a sequence of Boolean
variables that represents a natural number”.

We represent a k-ary quasi-periodic function f of period p by k variables
that represent the slopes (s1, . . . , sk) and pk variables that represent f(x) for
x ∈ {0, 1, . . . , p−1}k. We ensure that f is weakly monotonic by pk×k constraints
according to Theorem 4, part 1.

With the notation of Part 2 of that theorem, the combined function h has
each component of its slope vector constrained by one equation. To constrain
the (initial) values of h, for each argument tuple x ∈ {0, . . . , p − 1}l, and each
i ∈ {1, . . . , k}, we use a pair of variables (qi, ri) (quotient and remainder) that
fulfill gi(x) = p ∗ qi + ri ∧ ri < p. Then the values of h must obey the constraint
h(x) = s1q1 + . . .+ skqk + f(r1, . . . , rk).

Our implementation is restricted to the case where the period p is a power of
two because then the construction of qi, ri is much simpler, since all variables
use a base two representation.

We illustrate the method by the following examples.

Example 4. From the rewriting system

R = { c(f(y, b(f(0, x)))) → f(c(c(a(f(y, x)))), y),
f(0, b(f(y, x)))→ b(b(y)), f(y, a(f(0, x))) → y), a(c(y))→ y},
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the essential part of the DP transformed problem is SN(Stop/R) with

S = {C(f(y, b(f(0, x))))→ C(c(a(f(y, x)))), C(f(y, b(f(0, x)))) → C(a(f(y, x)))}.

Now we use a quasi-periodic interpretation of period 2.

[0] = 0, [a](x) = !x"2, [b](x) = 0
[c](x) = !x+ 1"2, [f ](x, y) = !x"2 + 1, [C](x) = x.

Here, !x"m denotes m ∗ (x div m) = x − (x mod m) (round down to the next
multiple of m). This interpretation is weakly compatible with R (meaning that
[8, α] ≥ [r, α] for all α and all rules 8 → r), for instance, the interpretation of
a(c(y)) is !y + 1"2, which is equal to y for even y and greater than y for odd y;
and strictly compatible with S (meaning that [8, α] > [r, α] for all α and all rules
8→ r), for instance, the interpretation of C(f(y, b(f(0, x)))) is !y"2 + 1 and the
interpretation of C(a(f(y, x))) is !y"2.

Example 5. For the rewriting system

R = { a(c(a(c(c(f(y, 0)))))) → y, f(y, f(0, c(x))) → a(c(y)),
f(y, x)→ c(c(y)), c(a(f(y, f(0, x)))) → a(f(f(f(y, y), x), 0))}

the essential part of DP(R) is

S = { F (y, f(0, c(x))) → C(y), F (y, x)→ {C(c(y)), C(y)},
C(a(f(y, f(0, x)))) → {F (f(f(y, y), x), 0), F (f(y, y), x), F (y, y)}},

where we have grouped together rules with identical left-hand sides. Then the
following quasi-periodic interpretation

[0] = 0, [a](x) = x+ 1, [c](x) = !x"2, [C](x) = !x"2 + 2,
[f ](x, y) = !x"2 + 1, [F ](x, y) = !x"2 + 2

is weakly compatible with R ∪ S and strictly compatible with those three rules
from S that have C as top symbol. So they can be removed, and the remaining
problem is easily solved.

None of the above examples can be solved by Jambox or Aprove (2006 version).
In our implementation the actual construction and solution (by minisat) of the
constraint system only takes a few seconds.

Both systems in the above examples are non-linear. A quasi-periodic interpre-
tation that is compatible with a non-linear system cannot have all slopes equal
to one. The examples also indicate that it is quite powerful to extend the range
of slopes to just {0, 1}.

The dependency pairs transformation creates rewriting systems that consist
of groups of rules with identical left-hand sides. So the computation of the in-
terpretation of left-hand sides can be shared. In fact, our implementation also
shares interpretations of identical subterms (in all rules). This leads to a sub-
stantial reduction of the size of the constraint system and the run time of the
solver.
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6 Direct Interpretations

Until now the dependency pairs transformation is an essential ingredient of our
approach. This has a few drawbacks: in this way the approach does not apply for
relative termination, and neither serves for investigation of derivational complex-
ity or more restricted variants of termination like total termination. Therefore in
this section we investigate how quasi-periodic interpretations can be used directly
without dependency pairs transformation. For that we need strict monotonicity
rather than weak monotonicity, and the classical monotone algebra approach
[12]. A quasi-periodic function f : N → N is called strictly monotonic if x < y
implies f(x) < f(y).

Note that a strictly monotonic quasi-periodic function has slope ≥ 1, and
the only such functions of slope = 1 are the functions x �→ x + c. The function
x �→ 1 + x+ !x"2 is strictly monotonic and has slope 2 and period 2. Here again
!x"m denotes m ∗ (x div m). We have the following properties:

Proposition 1. – A quasi-periodic function f of period p is strictly monotonic
if and only if we have f(x) < f(x+ 1) for every x ∈ {0, 1, . . . , p− 1}.

– If both f and q are strictly monotonic and quasi-periodic of period p, then the
composition x �→ f(g(x)) is strictly monotonic.

This means that we can handle strictly monotonic quasi-periodic functions ef-
fectively.

The classical monotone algebra approach restricting to natural numbers states
that for proving SN(R/S) it suffices to give an interpretation [·] that assigns to
each letter of the signature a strictly monotonic function, such that [8](x) > [r](x)
for each rule 8→ r ∈ R and [8](x) ≥ [r](x) for each rule 8→ r ∈ S, for all x ∈ N.

This scheme can be implemented in the same way as for weakly monotonic
functions. This approach may give very simple termination proofs.

Example 6. Consider the strictly monotonic interpretation of period 2

[a](x) = 1 + x+ !x"2, [b](x) = 2x.

It is strictly compatible with R = {a3 → bba, aba→ bba} and weakly compatible
with S = {bab→ aab}. This can be checked by a finite case analysis:

x [a3](x) [aba](x) [bba](x) [bab](x) [aab](x)
0 5 5 4 2 2
1 10 9 8 10 10

This proves SN(R/S). We also have SN(S), by counting letters a, therefore
SN(R ∪ S), which is the SRS Bouchare-06 in TPDB.

This problem has been solved in the 2006 competition by some of the tools, but
all generated proofs are much more complicated than this simple proof.

Since any quasi-periodic function is bounded from above by a linear func-
tion, the interpretation of a word then is bounded by an iterated linear function,
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giving an exponential function. Thus if a strictly monotonic quasi-periodic inter-
pretation is compatible with a rewriting system (removes all rules at the same
time), then the derivational complexity of that system is at most exponential.
We further note that since our interpretation domain is (N, >), which is totally
ordered, we may conclude total termination. This remains true if a proof is given
by repeated application of this direct method, since the lexicographic product
of a number of copies of N is still totally ordered. Hence Example 6 shows total
termination of the SRS Bouchare-06 in TPDB.

7 Conclusions

We introduced a new technique for proving termination of both term rewriting
and string rewriting. For both categories we succeeded in giving examples where
our technique applies and earlier techniques fail.

In particular, by our technique we proved termination of several SRSs in
TPDB for which termination was open until now. All of them consist of only
two rules over two symbols. The reason for this is simple: most of the SRSs
in TPDB for which termination is open came out of extensive search among
randomly generated SRSs of this shape, filtered by failure of earlier tools.

This does not mean that restricted to string rewriting our approach is only
successful for SRSs of this very special shape. For instance, our approach easily
finds a termination proof for the SRS consisting of the following ten rules

ab→ cd, cc→ bd, b→ cf, dd→ g, cd→ h,

f → g, f → dd, gh→ ac, hg → f, a→ dc,

where all other approaches until now fail.
In order to investigate the primary merits of our approach we focused our

experiments on the most basic setting: only combine it with the most basic kind
of polynomials and, for string rewriting, reversal of rules. For this basic setting
we showed that our approach is successful: we found termination proofs of 11
systems in TPDB for which termination was open until now. This is definitely
not the end point: this shows that it makes sense to plug in our technique in
other tools for proving termination, in order to combine it with the wide range
of termination techniques that have been implemented until now. Of course we
appreciate that this will not be done before publication of this paper. As a first
step in this direction we showed that by combining our approach with a very
basic instance of semantic labelling for string rewriting, termination could be
proved of two more SRSs in TPDB for which termination was open until now.

References

1. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theo-
retical Computer Science 236, 133–178 (2000)

2. Termination Problems Data Base http://www.lri.fr/∼marche/tpdb/

http://www.lri.fr/~marche/tpdb/


418 H. Zantema and J. Waldmann

3. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–
75. Springer, Heidelberg (2005)
Tool:http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

4. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-
mination of term rewriting. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 574–588. Springer, Heidelberg (2006)

5. Geser, A.: Termination of string rewriting rules that have one pair of overlaps. In:
Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 410–423. Springer, Heidel-
berg (2003)

6. Geser, A., Hofbauer, D., Waldmann, J., Zantema, H.: Finding finite automata
that certify termination of string rewriting. International Journal of Foundations
of Computer Science 16(3), 471–486 (2005)

7. Giesl, J., Arts, T., Ohlebusch, E.: Modular termination proofs for rewriting using
dependency pairs. Journal of Symbolic Computation 34(1), 21–58 (2002)

8. Hofbauer, D., Waldmann, J.: Proving termination with matrix interpretations. In:
Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 328–342. Springer, Heidelberg
(2006)
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